48 research outputs found

    Effects of treatment on IgE responses against parasite allergen-like proteins and immunit to reinfection in childhood schistosome and hookworm coinfections

    Get PDF
    Naturally occurring human immunity to both schistosomiasis and hookworm infection has been associated with IgE responses against parasite allergen-like proteins. Since the two helminths frequently coinfect the same individuals, there is growing advocacy for their concurrent treatment. However, both helminths are known to exert strong immunomodulatory effects; therefore, coinfected individuals could have immune responses different from those characteristically seen in monoinfected individuals. In this study, we measured changes in IgE, IgG1, and IgG4 responses to schistosome and hookworm antigens, including the allergen-like proteins Schistosoma mansoni tegumental-allergen-like 1 protein (SmTAL1), SmTAL2, and Necator americanus Ancylostoma-secreted protein-2 (Na-ASP-2), following concurrent treatment of schoolchildren coinfected withSchistosoma mansoni and hookworm. Antibody responses to schistosome egg (soluble egg antigen and SmTAL2) or somatic adult hookworm (AHW) antigens either decreased after treatment or were unchanged, whereas those to schistosome worm antigens (soluble worm antigen and SmTAL1) increased. The observed different effects of treatment likely reflect the different modes of drug action and sites of infection for these two helminths. Importantly, there was no evidence that the simultaneous treatment of coinfected children with praziquantel and albendazole affected schistosome- and hookworm-specific humoral responses differently from those characteristic of populations in which only one organism is endemic; schistosome- and hookworm-specific responses were not associated, and there was no evidence for cross-regulation. Posttreatment increases in the levels of IgE to schistosome worm antigens were associated with lower Schistosoma mansoni reinfection intensity, while no associations between humoral responses to AHW antigen and protection from hookworm reinfection were observed in this sample of school-aged children

    Suppression of basophil histamine-release and other IgE-dependent responses in childhood Schistosoma mansoni hookworm co-infection

    Get PDF
    Background. The poor correlation between allergen-specific-IgE (asIgE) and clinical signs of allergy in helminth infected populations suggests that helminth infections could protect against allergy by uncoupling asIgE from its effector mechanisms. We investigated this hypothesis in Ugandan schoolchildren coinfected with Schistosoma mansoni and hookworm. Methods. Skin prick test (SPT) sensitivity to house dust mite allergen (HDM) and current wheeze were assessed pre-anthelmintic treatment. Non-specific (anti-IgE), helminth-specific and HDM-allergen-specific basophil histamine release (HR), plus helminth- and HDM-specific IgE and IgG4 responses were measured pre- and post-treatment. Results. Non-specific- and helminth-specific-HR, and associations between helminth-specific-IgE and helminth-specific-HR increased post-treatment. Hookworm infection appeared to modify the relationship between circulating levels of HDM-IgE and HR: a significant positive association was observed among children without detectable hookworm infection but no association was observed among infected children. In addition, hookworm infection was associated with a significantly reduced risk of wheeze, and IgG4 to somatic adult hookworm antigen with a reduced risk of HDM-SPT sensitivity. There was no evidence for S. mansoniinfection having a similar suppressive effect on HDM-HR or symptoms of allergy. Conclusions. Basophil responsiveness appears suppressed during chronic helminth infection; at least in hookworm infection, this suppression may protect against allergy

    Suppression of basophil histamine release and other IgE-dependent responses in childhood Schistosoma mansoni/hookworm coinfection.

    Get PDF
    BACKGROUND: The poor correlation between allergen-specific immunoglobulin E (asIgE) and clinical signs of allergy in helminth infected populations suggests that helminth infections could protect against allergy by uncoupling asIgE from its effector mechanisms. We investigated this hypothesis in Ugandan schoolchildren coinfected with Schistosoma mansoni and hookworm. METHODS: Skin prick test (SPT) sensitivity to house dust mite allergen (HDM) and current wheeze were assessed pre-anthelmintic treatment. Nonspecific (anti-IgE), helminth-specific, and HDM-allergen-specific basophil histamine release (HR), plus helminth- and HDM-specific IgE and IgG4 responses were measured pre- and post-treatment. RESULTS: Nonspecific- and helminth-specific-HR, and associations between helminth-specific IgE and helminth-specific HR increased post-treatment. Hookworm infection appeared to modify the relationship between circulating levels of HDM-IgE and HR: a significant positive association was observed among children without detectable hookworm infection, but no association was observed among infected children. In addition, hookworm infection was associated with a significantly reduced risk of wheeze, and IgG4 to somatic adult hookworm antigen with a reduced risk of HDM-SPT sensitivity. There was no evidence for S. mansoni infection having a similar suppressive effect on HDM-HR or symptoms of allergy. CONCLUSIONS: Basophil responsiveness appears suppressed during chronic helminth infection; at least in hookworm infection, this suppression may protect against allergy

    Enhanced Pro-Inflammatory Cytokine Responses following Toll-Like-Receptor Ligation in Schistosoma haematobium-Infected Schoolchildren from Rural Gabon

    Get PDF
    BACKGROUND: Schistosoma infection is thought to lead to down-regulation of the host's immune response. This has been shown for adaptive immune responses, but the effect on innate immunity, that initiates and shapes the adaptive response, has not been extensively studied. In a first study to characterize these responses, we investigated the effect of Schistosoma haematobium infection on cytokine responses of Gabonese schoolchildren to a number of Toll-like receptor (TLR) ligands. METHODOLOGY: Peripheral blood mononuclear cells (PBMCs) were collected from S. haematobium-infected and uninfected schoolchildren from the rural area of Zile in Gabon. PBMCs were incubated for 24 h and 72 h with various TLR ligands, as well as schistosomal egg antigen (SEA) and adult worm antigen (AWA). Pro-inflammatory TNF-alpha and anti-inflammatory/regulatory IL-10 cytokine concentrations were determined in culture supernatants. PRINCIPAL FINDINGS: Infected children produced higher adaptive IL-10 responses than uninfected children against schistosomal antigens (72 h incubation). On the other hand, infected children had higher TNF-alpha responses than uninfected children and significantly higher TNF-alpha to IL-10 ratios in response to FSL-1 and Pam3, ligands of TLR2/6 and TLR2/1 respectively. A similar trend was observed for the TLR4 ligand LPS while Poly(I:C) (Mda5/TLR3 ligand) did not induce substantial cytokine responses (24 h incubation). CONCLUSIONS: This pilot study shows that Schistosoma-infected children develop a more pro-inflammatory TLR2-mediated response in the face of a more anti-inflammatory adaptive immune response. This suggests that S. haematobium infection does not suppress the host's innate immune system in the context of single TLR ligation

    The Synergistic Effect of Concomitant Schistosomiasis, Hookworm, and Trichuris Infections on Children's Anemia Burden

    Get PDF
    Polyparasitic infections have been recognized as the norm in many tropical developing countries, but the significance of this phenomenon for helminth-associated morbidities is largely unexplored. Earlier studies have suggested that multi-species, low-intensity parasitic infections were associated with higher odds of anemia among school-age children relative to their uninfected counterparts or those with one low-intensity infection. However, specific studies of the nature of interactions between helminth species in the mediation of helminth-associated morbidities are lacking. This study quantifies the extent to which polyparasitic infections have more than the sum of adverse effects associated with individual infections in the context of childhood anemia. This study found that the risk of anemia is amplified beyond the sum of risks for individual infections in children simultaneously exposed to 1) hookworm and schistosomiasis, and 2) hookworm and trichuris, and suggests that combined treatment for some geohelminth species and schistosomiasis could yield greater than additive benefits for the reduction of childhood anemia in helminth-endemic areas. However, more studies to understand the full range of interactions between parasitic species in their joint effects on helminth-associated morbidities will be necessary to better predict the impact of any future public health intervention

    B-cell activity in children with malaria

    Get PDF
    Abstract Background Recent studies implicate deficiency of red blood cell (RBC) complement regulatory proteins (CR1 and CD55) in the pathogenesis of malarial anaemia. This study explored the involvement of B cell CD21, which has an analogous role to RBC CR1. Methods In a case control study conducted in Kisumu District hospital, western Kenya, children with severe malaria anaemia (SMA) and those with uncomplicated malaria (UM) were assessed by flow cytometry for B cells (CD20+) numbers, expression levels of CD21 and deposition of C3dg and by ELISA for soluble CD21 (sCD21). Paired t tests were used to determine statistical significance at a = 0.05. Results Children with SMA had significantly higher lymphocyte count (9,627.7 ± 8786.1 SD vs. 5,507 ± 2436 SD, P = 0.04 in the UM group) and the computed geometric mean of mature B-cell numbers based on the absolute lymphocyte count was significantly higher for SMA group: 1,823 (1,126 to 2,982, 95% CI) and 826.6 (564 to 1,220, 95% CI)] for UM group (P = 0.003). SMA group also had a higher percentage of CD20+ B cells (26.8 ± 9.7SD vs 20.9 ± 9.01 SD in the UM) (P = 0.03), indicating considerable polyclonal B-cell activation. The CD21 median flourescence intensity was lower in the SMA (246.4 ± 87.4 SD vs 369 ± 137.7 SD) (P 0.0001), probably due to complement mediated shaving of CD21 by fixed tissue macrophages. The CD20+ B cells of SMAs had higher levels of the complement split product C3dg (18.35 ± 10 SD vs 11.5 ± 6.8 S.D), (P = 0.0002), confirming possible role of complement in CD21 removal. Unexpectedly, the SMAs had lower levels of sCD21 (226.5 ± 131.5 SD vs 341.4 ± 137.3 SD in the UM) (P Conclusions These results implicate B-cell in pathophysiology of severe malaria that involves increased B-cell proliferation, increased complement deposition and subsequent loss of membrane-bound CD21. The loss of CD21 is not by the classical enzmatic cleavage.</p
    corecore