21 research outputs found

    HIV virological non-suppression is highly prevalent among 18- to 24-year-old youths on antiretroviral therapy at the Kenyan coast

    Get PDF
    Background: In sub-Saharan Africa, data on virologic outcomes of young people living with HIV (YLWH) enrolled on antiretroviral therapy (ART) remains scarce. In this study, we describe the prevalence of HIV virological non-suppression (VNS) and its associated factors among YLWH aged 18–24 years from the Kenyan coast. Methods: Data were analyzed for 384 YLWH who participated in a larger cross-sectional study conducted between November 2018 and September 2019 in two counties at the Kenyan coast (Kilif and Mombasa). Descriptive statistics were used to summarize sample characteristics and logistic regression was used for statistical modeling of factors associated with VNS. In this study, VNS was defned as plasma viral load≥1000 copies/mL. Results: Among these YLWH with a mean age of 20.7 years (SD=2.2); 55.5% females, the overall prevalence of VNS was 32.0% (95% Confdence interval (95% CI): 27.5, 36.9%). In the multivariable logistic regression analysis, being from a largely rural setting (adjusted Odds Ratio (aOR) 1.73, 95% CI 1.10, 2.71; p=0.02), underweight (aOR 1.87, 95% CI 1.16, 3.01; p=0.01) and low self-reported ART adherence (aOR 2.83, 95% CI 1.34, 6.00; p=0.01) were signifcantly associated with higher odds of VNS in YLWH. Conclusions: In this study, high levels of VNS were observed among YLWH and this was signifcantly associated with rural residency, nutritional and ART adherence problems. ART adherence counselling and nutritional support and education should be intensifed in this setting targeting YLWH residing mostly in rural areas. Given the high frequency of VNS, there is need to closely monitor viral load and profle HIV drug resistance patterns in youths from the Kenyan coast with confrmed virologic failure. The latter will help understand whether drug resistance also contributes to poor viral suppression in addition to, or exclusive of suboptimal ART adherenc

    A phase I trial to evaluate the safety and pharmacokinetics of low-dose methotrexate as an anti-malarial drug in Kenyan adult healthy volunteers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous investigations indicate that methotrexate, an old anticancer drug, could be used at low doses to treat malaria. A phase I evaluation was conducted to assess the safety and pharmacokinetic profile of this drug in healthy adult male Kenyan volunteers.</p> <p>Methods</p> <p>Twenty five healthy adult volunteers were recruited and admitted to receive a 5 mg dose of methotrexate/day/5 days. Pharmacokinetics blood sampling was carried out at 2, 4, 6, 12 and 24 hours following each dose. Nausea, vomiting, oral ulcers and other adverse events were solicited during follow up of 42 days.</p> <p>Results</p> <p>The mean age of participants was 23.9 ± 3.3 years. Adherence to protocol was 100%. No grade 3 solicited adverse events were observed. However, one case of transiently elevated liver enzymes, and one serious adverse event (not related to the product) were reported. The maximum concentration (C<sub>max</sub>) was 160-200 nM and after 6 hours, the effective concentration (C<sub>eff</sub>) was <150 nM.</p> <p>Conclusion</p> <p>Low-dose methotraxate had an acceptable safety profile. However, methotrexate blood levels did not reach the desirable C<sub>eff </sub>of 250-400-nM required to clear malaria infection <it>in vivo</it>. Further dose finding and safety studies are necessary to confirm suitability of this drug as an anti-malarial agent.</p

    Observational study: 27 years of severe malaria surveillance in Kilifi, Kenya.

    Get PDF
    BACKGROUND: Many parts of Africa have witnessed reductions in Plasmodium falciparum transmission over the last 15 years. Since immunity to malaria is acquired more rapidly at higher transmission, the slower acquisition of immunity at lower transmission may partially offset the benefits of reductions in transmission. We examined the clinical spectrum of disease and predictors of mortality after sustained changes in transmission intensity, using data collected from 1989 to 2016. METHODS: We conducted a temporal observational analysis of 18,000 children, aged 14 days to 14 years old, who were admitted to Kilifi County Hospital, Kenya, from 1989 to 2016 with malaria. We describe the trends over time of the clinical and laboratory criteria for severe malaria and associated risk of mortality. RESULTS: During the time periods 1989-2003, 2004-2008, and 2009-2016, Kilifi County Hospital admitted averages of 657, 310, and 174 cases of severe malaria per year including averages of 48, 14, and 12 malaria-associated deaths per year, respectively. The median ages in years of children admitted with cerebral malaria, severe anaemia, and malaria-associated mortality were 3.0 (95% confidence interval (CI) 2.2-3.9), 1.1 (95% CI 0.9-1.4), and 1.1 (95% CI 0.3-2.2) in the year 1989, rising to 4.9 (95% CI 3.9-5.9), 3.8 (95% CI 2.5-7.1), and 5 (95% CI 3.3-6.3) in the year 2016. The ratio of children with cerebral malaria to severe anaemia rose from 1:2 before 2004 to 3:2 after 2009. Hyperparasitaemia was a risk factor for death after 2009 but not in earlier time periods. CONCLUSION: Despite the evidence of slower acquisition of immunity, continued reductions in the numbers of cases of severe malaria resulted in lower overall mortality. Our temporal data are limited to a single site, albeit potentially applicable to a secular trend present in many parts of Africa

    Clinical laboratory reference values amongst children aged 4 weeks to 17 months in Kilifi, Kenya: A cross sectional observational study

    Get PDF
    Reference intervals for clinical laboratory parameters are important for assessing eligibility, toxicity grading and management of adverse events in clinical trials. Nonetheless, haematological and biochemical parameters used for clinical trials in sub-Saharan Africa are typically derived from industrialized countries, or from WHO references that are not region-specific. We set out to establish community reference values for haematological and biochemical parameters amongst children aged 4 weeks to 17 months in Kilifi, Kenya. We conducted a cross sectional study nested within phase II and III trials of RTS, S malaria vaccine candidate. We analysed 10 haematological and 2 biochemical parameters from 1,070 and 423 community children without illness prior to experimental vaccine administration. Statistical analysis followed Clinical and Laboratory Standards Institute EP28-A3c guidelines. 95% reference ranges and their respective 90% confidence intervals were determined using non-parametric methods. Findings were compared with published ranges from Tanzania, Europe and The United States. We determined the reference ranges within the following age partitions: 4 weeks to <6 months, 6 months to less than <12 months, and 12 months to 17 months for the haematological parameters; and 4 weeks to 17 months for the biochemical parameters. There were no gender differences for all haematological and biochemical parameters in all age groups. Hb, MCV and platelets 95% reference ranges in infants largely overlapped with those from United States or Europe, except for the lower limit for Hb, Hct and platelets (lower); and upper limit for platelets (higher) and haematocrit(lower). Community norms for common haematological and biochemical parameters differ from developed countries. This reaffirms the need in clinical trials for locally derived reference values to detect deviation from what is usual in typical children in low and middle income countries

    HIV virological non-suppression is highly prevalent among 18- to 24-year-old youths on antiretroviral therapy at the Kenyan coast

    No full text
    Background: In sub-Saharan Africa, data on virologic outcomes of young people living with HIV (YLWH) enrolled on antiretroviral therapy (ART) remains scarce. In this study, we describe the prevalence of HIV virological non-suppression (VNS) and its associated factors among YLWH aged 18–24 years from the Kenyan coast. Methods: Data were analyzed for 384 YLWH who participated in a larger cross-sectional study conducted between November 2018 and September 2019 in two counties at the Kenyan coast (Kilifi and Mombasa). Descriptive statistics were used to summarize sample characteristics and logistic regression was used for statistical modeling of factors associated with VNS. In this study, VNS was defined as plasma viral load ≥ 1000 copies/mL. Results: Among these YLWH with a mean age of 20.7 years (SD = 2.2); 55.5% females, the overall prevalence of VNS was 32.0% (95% Confidence interval (95% CI): 27.5, 36.9%). In the multivariable logistic regression analysis, being from a largely rural setting (adjusted Odds Ratio (aOR) 1.73, 95% CI 1.10, 2.71; p = 0.02), underweight (aOR 1.87, 95% CI 1.16, 3.01; p = 0.01) and low self-reported ART adherence (aOR 2.83, 95% CI 1.34, 6.00; p = 0.01) were significantly associated with higher odds of VNS in YLWH. Conclusions: In this study, high levels of VNS were observed among YLWH and this was significantly associated with rural residency, nutritional and ART adherence problems. ART adherence counselling and nutritional support and education should be intensified in this setting targeting YLWH residing mostly in rural areas. Given the high frequency of VNS, there is need to closely monitor viral load and profile HIV drug resistance patterns in youths from the Kenyan coast with confirmed virologic failure. The latter will help understand whether drug resistance also contributes to poor viral suppression in addition to, or exclusive of suboptimal ART adherence

    Targeted amplicon deep sequencing of ama1 and mdr1 to track within-host P. falciparum diversity throughout treatment in a clinical drug trial

    Get PDF
    Introduction: Antimalarial therapeutic efficacy studies are routinely conducted in malaria-endemic countries to assess the effectiveness of antimalarial treatment strategies. Targeted amplicon sequencing (AmpSeq) uniquely identifies and quantifies genetically distinct parasites within an infection. In this study, AmpSeq of Plasmodium falciparum apical membrane antigen 1 (ama1), and multidrug resistance gene 1 (mdr1), were used to characterise the complexity of infection (COI) and drug-resistance genotypes, respectively. Methods: P. falciparum-positive samples were obtained from a triple artemisinin combination therapy clinical trial conducted in 30 children under 13 years of age between 2018 and 2019 in Kilifi, Kenya. Nine of the 30 participants presented with recurrent parasitemia from day 26 (624h) onwards. The ama1 and mdr1 genes were amplified and sequenced, while msp1, msp2 and glurp data were obtained from the original clinical study. Results: The COI was comparable between ama1 and msp1, msp2 and glurp; overall, ama1 detected more microhaplotypes. Based on ama1, a stable number of microhaplotypes were detected throughout treatment until day 3. Additionally, a recrudescent infection was identified with an ama1 microhaplotype initially observed at 30h and later in an unscheduled follow-up visit. Using the relative frequencies of ama1 microhaplotypes and parasitemia, we identified a fast (&lt;1h) and slow (&gt;5h) clearing microhaplotype. As expected, only two mdr1 microhaplotypes (NF and NY) were identified based on the combination of amino acid polymorphisms at codons 86 and 184. Conclusions: This study highlights AmpSeq as a tool for highly-resolution tracking of parasite microhaplotypes throughout treatment and can detect variation in microhaplotype clearance estimates. AmpSeq can also identify slow-clearing microhaplotypes, a potential early sign of selection during treatment. Consequently, AmpSeq has the capability of improving the discriminatory power to distinguish recrudescences from reinfections accurately

    Targeted Amplicon deep sequencing of ama1 and mdr1 to track within-host P. falciparum diversity in Kilifi, KENYA

    No full text
    These data were generated from targeted amplicon sequencing of Plasmodium falciparum ama1 and mdr1 genes in samples collected from Kilifi, at the coast of Kenya. Two objectives were explored: [1] To determine temporal changes in the genetic diversity of malaria parasites in asymptomatic and febrile infections. [2] To track within-host parasite diversity, throughout treatment in a clinical drug trial
    corecore