32 research outputs found

    Plasma Plasmodium falciparum Histidine-Rich Protein-2 Concentrations Are Associated with Malaria Severity and Mortality in Tanzanian Children

    Get PDF
    Plasma Plasmodium falciparum histidine-rich protein-2 (PfHRP-2) concentrations, a measure of parasite biomass, have been correlated with malaria severity in adults, but not yet in children. We measured plasma PfHRP-2 in Tanzanian children with uncomplicated (n = 61) and cerebral malaria (n = 45; 7 deaths). Median plasma PfHRP-2 concentrations were higher in cerebral malaria (1008 [IQR 342–2572] ng/mL) than in uncomplicated malaria (465 [IQR 36–1426] ng/mL; p = 0.017). In cerebral malaria, natural log plasma PfHRP-2 was associated with coma depth (r = −0.42; p = 0.006) and mortality (OR: 3.0 [95% CI 1.03–8.76]; p = 0.04). In this relatively small cohort study in a mesoendemic transmission area of Africa, plasma PfHRP-2 was associated with pediatric malaria severity and mortality. Further studies among children in areas of Africa with higher malaria transmission and among children with different clinical manifestations of severe malaria will help determine the wider utility of quantitative PfHRP-2 as a measure of parasite biomass and prognosis in sub-Saharan Africa

    A study of the TNF/LTA/LTB locus and susceptibility to severe malaria in highland papuan children and adults

    Get PDF
    Background: Severe malaria (SM) syndromes caused by Plasmodium falciparum infection result in major morbidity and mortality each year. However, only a fraction of P. falciparum infections develop into SM, implicating host genetic factors as important determinants of disease outcome. Previous studies indicate that tumour necrosis factor (TNF) and lymphotoxin alpha (LT alpha) may be important for the development of cerebral malaria (CM) and other SM syndromes

    Decreased microvascular function in Tanzanian children with severe and uncomplicated falciparum malaria

    No full text
    Microvascular function and oxygen consumption affect oxygen homeostasis but have not been assessed in African children with malaria. Microvascular function in Tanzanian children with severe malaria (SM) or uncomplicated malaria were 39% and 72%, respectively, of controls (P < .001). Uncomplicated malaria (P = .04), not SM (P = .06), children had increased oxygen consumption compared with controls.Published versio

    Vascular dysfunction in malaria: understanding the role of the endothelial glycocalyx

    Get PDF
    Malaria caused by Plasmodium falciparum results in over 400,000 deaths annually, predominantly affecting African children. In addition, non-falciparum species including vivax and knowlesi cause significant morbidity and mortality. Vascular dysfunction is a key feature in malaria pathogenesis leading to impaired blood perfusion, vascular obstruction, and tissue hypoxia. Contributing factors include adhesion of infected RBC to endothelium, endothelial activation, and reduced nitric oxide formation. Endothelial glycocalyx (eGC) protects the vasculature by maintaining vessel integrity and regulating cellular adhesion and nitric oxide signaling pathways. Breakdown of eGC is known to occur in infectious diseases such as bacterial sepsis and dengue and is associated with adverse outcomes. Emerging studies using biochemical markers and in vivo imaging suggest that eGC breakdown occurs during Plasmodium infection and is associated with markers of malaria disease severity, endothelial activation, and vascular function. In this review, we describe characteristics of eGC breakdown in malaria and discuss how these relate to vascular dysfunction and adverse outcomes. Further understanding of this process may lead to adjunctive therapy to preserve or restore damaged eGC and reduce microvascular dysfunction and the morbidity/mortality of malaria.This work was supported by the US National Institutes of Health, National Heart, Lung, and Blood Institute Grant R01 HL130763- 01 and the VA Research Service (JW). NA was supported by the National Health and Medical Research Council (1135820)

    Вопросы к экзамену по дисциплине "Политическая культура"

    Get PDF
    Decreased bioavailability of nitric oxide (NO) is a major contributor to the pathophysiology of severe falciparum malaria. Tetrahydrobiopterin (BH4) is an enzyme cofactor required for NO synthesis from L-arginine. We hypothesized that systemic levels of BH₄ would be decreased in children with cerebral malaria, contributing to low NO bioavailability. In an observational study in Tanzania, we measured urine levels of biopterin in its various redox states (fully reduced [BH₄] and the oxidized metabolites, dihydrobiopterin [BH₂] and biopterin [B₀]) in children with uncomplicated malaria (UM, n = 55), cerebral malaria (CM, n = 45), non-malaria central nervous system conditions (NMC, n = 48), and in 111 healthy controls (HC). Median urine BH4 concentration in CM (1.10 [IQR:0.55-2.18] μmol/mmol creatinine) was significantly lower compared to each of the other three groups - UM (2.10 [IQR:1.32-3.14];p<0.001), NMC (1.52 [IQR:1.01-2.71];p = 0.002), and HC (1.60 [IQR:1.15-2.23];p = 0.005). Oxidized biopterins were increased, and the BH4:BH2 ratio markedly decreased in CM. In a multivariate logistic regression model, each Log10-unit decrease in urine BH4 was independently associated with a 3.85-fold (95% CI:1.89-7.61) increase in odds of CM (p<0.001). Low systemic BH4 levels and increased oxidized biopterins contribute to the low NO bioavailability observed in CM. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria
    corecore