50 research outputs found

    Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis.

    Get PDF
    BACKGROUND: Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine. METHODS AND FINDINGS: Published pharmacokinetic studies on piperaquine were identified through a systematic literature review of articles published between 1 January 1960 and 15 February 2013. Individual plasma piperaquine concentration-time data from 11 clinical studies (8,776 samples from 728 individuals) in adults and children with uncomplicated malaria and healthy volunteers were collated and standardised by the WorldWide Antimalarial Resistance Network. Data were pooled and analysed using nonlinear mixed-effects modelling. Piperaquine pharmacokinetics were described successfully by a three-compartment disposition model with flexible absorption. Body weight influenced clearance and volume parameters significantly, resulting in lower piperaquine exposures in small children (<25 kg) compared to larger children and adults (≥25 kg) after administration of the manufacturers' currently recommended dose regimens. Simulated median (interquartile range) day 7 plasma concentration was 29.4 (19.3-44.3) ng/ml in small children compared to 38.1 (25.8-56.3) ng/ml in larger children and adults, with the recommended dose regimen. The final model identified a mean (95% confidence interval) increase of 23.7% (15.8%-32.5%) in piperaquine bioavailability between each piperaquine dose occasion. The model also described an enzyme maturation function in very young children, resulting in 50% maturation at 0.575 (0.413-0.711) y of age. An evidence-based optimised dose regimen was constructed that would provide piperaquine exposures across all ages comparable to the exposure currently seen in a typical adult with standard treatment, without exceeding the concentration range observed with the manufacturers' recommended regimen. Limited data were available in infants and pregnant women with malaria as well as in healthy individuals. CONCLUSIONS: The derived population pharmacokinetic model was used to develop a revised dose regimen of dihydroartemisinin-piperaquine that is expected to provide equivalent piperaquine exposures safely in all patients, including in small children with malaria. Use of this dose regimen is expected to prolong the useful therapeutic life of dihydroartemisinin-piperaquine by increasing cure rates and thereby slowing resistance development. This work was part of the evidence that informed the World Health Organization technical guidelines development group in the development of the recently published treatment guidelines (2015)

    Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine.

    Get PDF
    Adequate clinical and parasitologic cure by artemisinin combination therapies relies on the artemisinin component and the partner drug. Polymorphisms in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes are associated with decreased sensitivity to amodiaquine and lumefantrine, but effects of these polymorphisms on therapeutic responses to artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) have not been clearly defined. Individual patient data from 31 clinical trials were harmonized and pooled by using standardized methods from the WorldWide Antimalarial Resistance Network. Data for more than 7,000 patients were analyzed to assess relationships between parasite polymorphisms in pfcrt and pfmdr1 and clinically relevant outcomes after treatment with AL or ASAQ. Presence of the pfmdr1 gene N86 (adjusted hazards ratio = 4.74, 95% confidence interval = 2.29 - 9.78, P < 0.001) and increased pfmdr1 copy number (adjusted hazards ratio = 6.52, 95% confidence interval = 2.36-17.97, P < 0.001 : were significant independent risk factors for recrudescence in patients treated with AL. AL and ASAQ exerted opposing selective effects on single-nucleotide polymorphisms in pfcrt and pfmdr1. Monitoring selection and responding to emerging signs of drug resistance are critical tools for preserving efficacy of artemisinin combination therapies; determination of the prevalence of at least pfcrt K76T and pfmdr1 N86Y should now be routine

    The role for osmotic agents in children with acute encephalopathies: a systematic review

    Get PDF
    Background: Raised intracranial pressure (ICP) is known to complicate both traumatic and non-traumatic encephalopathies. It impairs cerebral perfusion and may cause death due to global ischaemia and intracranial herniation. Osmotic agents are widely used to control ICP. In children, guidelines for their use are mainly guided by adult studies. We conducted this review to determine the current evidence of the effectiveness of osmotic agents and their effect on resolution of coma and outcome in children with acute encephalopathy.Methods: We searched several databases for published and unpublished studies in English and French languages, between January 1966 and March 2009. We considered studies on the use of osmotic agents in children aged between 0 and 16 years with acute encephalopathies. We examined reduction in intracranial pressure, time to resolution of coma, and occurrence of neurological sequelae and death.Results: We identified four randomized controlled trials, three prospective studies, two retrospective studies and one case report. Hypertonic saline (HS) achieved greater reduction in intracranial pressure (ICP) compared to mannitol and other fluids; normal saline or ringer's lactate. This effect was sustained for longer when it was given as continuous infusion. Boluses of glycerol and mannitol achieved transient reduction in ICP. Oral glycerol was associated with lower mortality and neurological sequelae when compared to placebo in children with acute bacterial meningitis. HS was associated with lower mortality when compared to mannitol in children with non-traumatic encephalopathies.Conclusion: HS appears to achieve a greater reduction in ICP than other osmotic agents. Oral glycerol seems to improve outcome among children with acute bacterial meningitis. A sustained reduction in ICP is desirable and could be achieved by modifying the modes and rates of administration of these osmotic agents, but these factors need further investigation

    The activities of various antimalarial drugs on Plasmodium falciparum isolates in Kilifi Kenya and studies on mechanisms of resistance

    No full text
    Drug resistance is a significant challenge in the fight against malaria. Importantly, reduced efficacy has been reported against artemether (ATM)/Lumefantrine (LM) (LM-ATM), amodiaquine (AQ)/artesunate (AS) (AQ-AS), two important combination treatment regimens in Africa, and against piperaquine (PQ), a drug which has been evaluated as a potential alternative in Africa, in combination with dihydroarteminisin (DHA). Chloroquine (CQ) resistance in P.falciparum is associated with two main transporters PfCRT and PfMDR1. I investigated the mechanisms of resistance to PQ, LM and AQ, with the overall goal of identifying molecular markers that can be used to track resistance. I used CQ as a reference.The key antimalarial drugs were highly active against clinical isolates from Kilifi, Kenya with median inhibitory concentrations (IC50s) of &lt;5nM for DHA and &lt;55 nM for CQ, AQ, PQ, LM and DEAQ (desethylamodiaquine, the active metabolite of AQ). pfcrt-76 and pfmdr1-86 mutations were associated with AQ, DEAQ and LM but not DHA or PQ activity. Interestingly, &gt; 20% of analysed isolates had decreased susceptibility to LM (IC50 &gt;100nM); these isolates were the most susceptible to CQ and carried wild type genotypes at pfcrt-76 and pfmdr1-86. I observed that CQ resistance had been declining in Kilifi since 1993 (prior to CQ withdrawal) to 2006 (7 years after its withdrawal), similar to observations in Malawi. My results support the hypothesis that susceptibility to antimalarial drugs returns when drug pressure is removed, and suggest that the use of LM-ATM may hasten the return of CQ susceptibility.Continued monitoring of drug susceptibility is crucial. pfcrt-76 and pfmdr1-86 may be useful molecular markers of LM-ATM efficacy in Kilifi and other African sites. Using a microarray approach, I identified additional genes (including various transporters) that may contribute to LM resistance. I recommend further studies to clarify the exact roles of the identified genes.</p

    Implementing the Emergency Triage, Assessment and Treatment plus admission care (ETAT+) clinical practice guidelines to improve quality of hospital care in Rwandan district hospitals: healthcare workers’ perspectives on relevance and challenges

    Get PDF
    Background: An emergency triage, assessment and treatment plus admission care (ETAT+) intervention was implemented in Rwandan district hospitals to improve hospital care for severely ill infants and children. Many interventions are rarely implemented with perfect fidelity under real-world conditions. Thus, evaluations of the real-world experiences of implementing ETAT+ are important in terms of identifying potential barriers to successful implementation. This study explored the perspectives of Rwandan healthcare workers (HCWs) on the relevance of ETAT+ and documented potential barriers to its successful implementation. Methods: HCWs enrolled in the ETAT+ training were asked, immediately after the training, their perspective regarding (i) relevance of the ETAT+ training to Rwandan district hospitals; (ii) if attending the training would bring about change in their work; and (iii) challenges that they encountered during the training, as well as those they anticipated to hamper their ability to translate the knowledge and skills learned in the ETAT+ training into practice in order to improve care for severely ill infants and children in their hospitals. They wrote their perspectives in French, Kinyarwanda, or English and sometimes a mixture of all these languages that are official in the post-genocide Rwanda. Their notes were translated to (if not already in) English and transcribed, and transcripts were analyzed using thematic content analysis. Results: One hundred seventy-one HCWs were included in our analysis. Nearly all these HCWs stated that the training was highly relevant to the district hospitals and that it aligned with their work expectation. However, some midwives believed that the “neonatal resuscitation and feeding” components of the training were more relevant to them than other components. Many HCWs anticipated to change practice by initiating a triage system in their hospital and by using job aids including guidelines for prescription and feeding. Most of the challenges stemmed from the mode of the ETAT+ training delivery (e.g., language barriers, intense training schedule); while others were more related to uptake of guidelines in the district hospitals (e.g., staff turnover, reluctance to change, limited resources, conflicting protocols). Conclusion: This study highlights potential challenges to successful implementation of the ETAT+ clinical practice guidelines in order to improve quality of hospital care in Rwandan district hospitals. Understanding these challenges, especially from HCWs perspective, can guide efforts to improve uptake of clinical practice guidelines including ETAT+ in Rwanda.Medicine, Faculty ofNon UBCPopulation and Public Health (SPPH), School ofReviewedFacult

    The activities of various antimalarial drugs on Plasmodium falciparum isolates in Kilifi Kenya and studies on mechanisms of resistance

    No full text
    Drug resistance is a significant challenge in the fight against malaria. Importantly, reduced efficacy has been reported against artemether (ATM)/Lumefantrine (LM) (LM-ATM), amodiaquine (AQ)/artesunate (AS) (AQ-AS), two important combination treatment regimens in Africa, and against piperaquine (PQ), a drug which has been evaluated as a potential alternative in Africa, in combination with dihydroarteminisin (DHA). Chloroquine (CQ) resistance in P.falciparum is associated with two main transporters PfCRT and PfMDR1. I investigated the mechanisms of resistance to PQ, LM and AQ, with the overall goal of identifying molecular markers that can be used to track resistance. I used CQ as a reference. The key antimalarial drugs were highly active against clinical isolates from Kilifi, Kenya with median inhibitory concentrations (IC<sub>50</sub>s) of <5nM for DHA and <55 nM for CQ, AQ, PQ, LM and DEAQ (desethylamodiaquine, the active metabolite of AQ). pfcrt-76 and pfmdr1-86 mutations were associated with AQ, DEAQ and LM but not DHA or PQ activity. Interestingly, > 20% of analysed isolates had decreased susceptibility to LM (IC<sub>50</sub> >100nM); these isolates were the most susceptible to CQ and carried wild type genotypes at pfcrt-76 and pfmdr1-86. I observed that CQ resistance had been declining in Kilifi since 1993 (prior to CQ withdrawal) to 2006 (7 years after its withdrawal), similar to observations in Malawi. My results support the hypothesis that susceptibility to antimalarial drugs returns when drug pressure is removed, and suggest that the use of LM-ATM may hasten the return of CQ susceptibility. Continued monitoring of drug susceptibility is crucial. pfcrt-76 and pfmdr1-86 may be useful molecular markers of LM-ATM efficacy in Kilifi and other African sites. Using a microarray approach, I identified additional genes (including various transporters) that may contribute to LM resistance. I recommend further studies to clarify the exact roles of the identified genes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    The activities of various antimalarial drugs on Plasmodium falciparum isolates in Kilifi Kenya and studies on mechanisms of resistance

    No full text
    Drug resistance is a significant challenge in the fight against malaria. Importantly, reduced efficacy has been reported against artemether (ATM)/Lumefantrine (LM) (LM-ATM), amodiaquine (AQ)/artesunate (AS) (AQ-AS), two important combination treatment regimens in Africa, and against piperaquine (PQ), a drug which has been evaluated as a potential alternative in Africa, in combination with dihydroarteminisin (DHA). Chloroquine (CQ) resistance in P.falciparum is associated with two main transporters PfCRT and PfMDR1. I investigated the mechanisms of resistance to PQ, LM and AQ, with the overall goal of identifying molecular markers that can be used to track resistance. I used CQ as a reference. The key antimalarial drugs were highly active against clinical isolates from Kilifi, Kenya with median inhibitory concentrations (IC50s) of 20% of analysed isolates had decreased susceptibility to LM (IC50 >100nM); these isolates were the most susceptible to CQ and carried wild type genotypes at pfcrt-76 and pfmdr1-86. I observed that CQ resistance had been declining in Kilifi since 1993 (prior to CQ withdrawal) to 2006 (7 years after its withdrawal), similar to observations in Malawi. My results support the hypothesis that susceptibility to antimalarial drugs returns when drug pressure is removed, and suggest that the use of LM-ATM may hasten the return of CQ susceptibility. Continued monitoring of drug susceptibility is crucial. pfcrt-76 and pfmdr1-86 may be useful molecular markers of LM-ATM efficacy in Kilifi and other African sites. Using a microarray approach, I identified additional genes (including various transporters) that may contribute to LM resistance. I recommend further studies to clarify the exact roles of the identified genes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    In Vitro Activity of Antifolate and Polymorphism in Dihydrofolate Reductase of Plasmodium falciparum Isolates from the Kenyan Coast: Emergence of Parasites with Ile-164-Leu Mutation▿

    No full text
    We have analyzed the activities of the antifolates pyrimethamine (PM), chlorcycloguanil (CCG), WR99210, trimethoprim (TMP), methotrexate (MTX), and trimetrexate (TMX) against Kenyan Plasmodium falciparum isolates adapted in vitro for long-term culture. We have also assessed the relationship between these drug activities and mutations in dihydrofolate reductase (dhfr), a domain of the gene associated with antifolate resistance. As expected, WR99210 was the most potent drug, with a median 50% inhibitory concentration (IC50) of <0.075 nM, followed by TMX, with a median IC50 of 30 nM. The median IC50 of CCG was 37.80 nM, and that of MTX was 83.60 nM. PM and TMP were the least active drugs, with median IC50s of 733.26 nM and 29,656.04 nM, respectively. We analyzed parasite dhfr genotypes by the PCR-enzyme restriction technique. No wild-type dhfr parasite was found. Twenty-four of 33 parasites were triple mutants (mutations at codons 108, 51, and 59), and only 8/33 were double mutants (mutations at codons 108 and 51 or at codons 108 and 59). IC50s were 2.1-fold (PM) and 3.6-fold (TMP) higher in triple than in double mutants, though these differences were not statistically significant. Interestingly, we have identified a parasite harboring a mutation at codon 164 (Ile-164-Leu) in addition to mutations at codons 108, 51, and 59. This quadruple mutant parasite had the highest TMP IC50 and was in the upper 10th percentile against PM and CCG. We confirmed the presence of this mutation by sequencing. Thus, TMX and MTX are potent against P. falciparum, and quadruple mutants are now emerging in Africa

    In Vitro Activities of Quinine and Other Antimalarials and pfnhe Polymorphisms in Plasmodium Isolates from Kenya▿

    No full text
    Resistance to the amino alcohol quinine has been associated with polymorphisms in pfnhe, a sodium hydrogen exchanger. We investigated the role of this gene in quinine resistance in vitro in isolates from Kenya. We analyzed pfnhe whole-gene polymorphisms, using capillary sequencing, and pfcrt at codon 76 (pfcrt-76) and pfmdr1 at codon 86 (pfmdr1-86), using PCR-enzyme restriction methodology, in 29 isolates from Kilifi, Kenya, for association with the in vitro activities of quinine and 2 amino alcohols, mefloquine and halofantrine. In vitro activity was assessed as the drug concentration that inhibits 50% of parasite growth (IC50). The median IC50s of quinine, halofantrine, and mefloquine were 92, 22, and 18 nM, respectively. The presence of 2 DNNND repeats in microsatellite ms4760 of pfnhe was associated with reduced susceptibility to quinine (60 versus 227 nM for 1 and 2 repeats, respectively; P < 0.05), while 3 repeats were associated with restoration of susceptibility. The decrease in susceptibility conferred by the 2 DNNND repeats was more pronounced in parasites harboring the pfmdr1-86 mutation. No association was found between susceptibility to quinine and the pfcrt-76 mutation or between susceptibility to mefloquine or halofantrine and the pfnhe gene and the pfcrt-76 and pfmdr1-86 mutations. Using previously published data on the in vitro activities of chloroquine, lumefantrine, piperaquine, and dihydroartemisinin, we investigated the association of their activities with pfnhe polymorphism. With the exception of a modulation of the activity of lumefantrine by a mutation at position 1437, pfnhe did not modulate their activities. Two DNNND repeats combined with the pfmdr1-86 mutation could be used as an indicator of reduced susceptibility to quinine
    corecore