8 research outputs found

    Advanced energy management system with the incorporation of novel security features

    Get PDF
    Nowadays, energy management is a subject of great importance and complexity. Pakistan, being in a state of developing country, generates electrical power mainly by using non-renewable sources of energy. Non-renewable entities are fossil fuels such as furnace oil, natural gas, coal, and nuclear power. Pakistan has been facing a severe shortage of production in energy sector for last two decades. This shortfall is affecting the industrial development as well as economic growth. With the growing population, the load demand is rapidly increasing and there must be a need to expand the existing ones or to build new power systems. In this paper, an autonomous management system has been proposed to enhance quality, reliability and confidence of utilization of energy between end consumers and suppliers. Such objectives can only be fulfilled by making the power supply secure for end consumers. Distributed and centralized control systems are involved for maintaining a balance between renewable energy resources and base power, so that end consumers demand can be fulfilled when required. A reliable Two-way communication system between suppliers and end consumers has been proposed by using Message Digest algorithm which ensures that there would be no energy theft. Simulations have been done in MATLAB/ Simulink environment and results have been presented to show the effectiveness of the proposed model

    Comparative analysis of optimal power flow in renewable energy sources based microgrids

    Get PDF
    Adaptation of renewable energy is inevitable. The idea of microgrid offers integration of renewable energy sources with conventional power generation sources. In this research, an operative approach was proposed for microgrids comprising of four different power generation sources. The microgrid is a way that mixes energy locally and empowers the end-users to add useful power to the network. IEEE-14 bus system-based microgrid was developed in MATLAB/Simulink to demonstrate the optimal power flow. Two cases of battery charging and discharging were also simulated to evaluate its realization. The solution of power flow analysis was obtained from the Newton–Raphson method and particle swarm optimization method. A comparison was drawn between these methods for the proposed model of the microgrid on the basis of transmission line losses and voltage profile. Transmission line losses are reduced to about 17% in the case of battery charging and 19 to 20% in the case of battery discharging when system was analyzed with the particle swarm optimization. Particle swarm optimization was found more promising for the deliverance of optimal power flow in the renewable energy sources-based microgrid

    Energy Efficiency and Throughput Optimization in 5G Heterogeneous Networks

    Get PDF
    Device to device communication offers an optimistic technology for 5G network which aims to enhance data rate, reduce latency and cost, improve energy efficiency as well as provide other desired features. 5G heterogeneous network (5GHN) with a decoupled association strategy of downlink (DL) and uplink (UL) is an optimistic solution for challenges which are faced in 4G heterogeneous network (4GHN). Research work presented in this paper evaluates performance of 4GHN along with DL and UL coupled (DU-CP) access scheme in comparison with 5GHN with UL and DL decoupled (DU-DCP) access scheme in terms of energy efficiency and network throughput in 4-tier heterogeneous networks. Energy and throughput are optimized for both scenarios i.e. DU-CP and DU-DCP and the results are compared. Detailed performance analysis of DU-CP and DU-DCP access schemes has been done with the help of comparisons of results achieved by implementing genetic algorithm (GA) and particle swarm optimization (PSO). Both these algorithms are suited for the non linear problem under investigation where the search space is large. Simulation results have shown that the DU-DCP access scheme gives better performance as compared to DU-CP scheme in a 4-tier heterogeneous network in terms of network throughput and energy efficiency. PSO achieves an energy efficiency of 12 Mbits/joule for DU-CP and 42 Mbits/joule for DU-DCP, whereas GA yields an energy efficiency of 28 Mbits/joule for DU-CP and 55 Mbits/joule for DU-DCP. Performance of the proposed method is compared with that of three other schemes. The results show that the DU-DCP scheme using GA outperforms the compared methods

    Traveling Waves-Based Method for Fault Estimation in HVDC Transmission System

    No full text
    The HVDC transmission system is winning hearts of researchers and electrical engineers because of its notable merits as compared to the HVAC transmission system in the case of long-distance bulk power transmission. The HVDC transmission system is known for its low losses, effective control ability, efficiency and reliability. However, because of the sudden build-up of fault current in the HVDC transmission system, conventional relays and circuit breakers are required to be modified. Detection of fault location is an important parameter of protection of the HVDC transmission system. In this research paper, fault location methods based on traveling waves are reviewed for the HVDC transmission system. Arrival time and natural frequency are the two parameters of measurement in traveling waves. Advantages and disadvantages of methods of traveling waves with respect to their quantities of measurements are analyzed critically. Further, a two-terminal HVDC test grid is simulated over Matlab/Simulink. Different types of AC and DC faults and at different locations are analyzed on a test grid. A traveling wave-based technique of fault estimation is developed and is evaluated for identification, classification and finding location of faults to validate its performance. Moreover, this technique is supported with analysis of fast Fourier transform to accelerate its practicality and realization

    Artificial Neural Network-Based Control of Switched Reluctance Motor for Torque Ripple Reduction

    No full text
    Switched reluctance motor is acquiring major attention because of its simple design, economic development, and reduced dependability. These attributes make switched reluctance motors superior to other variable speed machines. The major challenge associated with the development of a switched reluctance motor is its high torque ripple. Torque ripple produces noise and vibration, resulting in degradation of its performance. Various techniques are developed to cope with torque ripples. Practically, there exists not a single mature technique for the minimization of torque ripples in switched reluctance motors. In this research, a switched reluctance motor is modelled and analysed. Its speed and current control are implemented through artificial neural networks. Artificial neural network is found to be a promising technique as compared with other techniques because of its accuracy, reduced complexity, stability, and generalization. The Levenberg–Marquardt algorithm is utilized in artificial neural networks due to its fast and stable convergence for training and testing. It is found from research that artificial neural network-based improved control shows better performance of the switched reluctance motor. Realization of this technique is further validated from its mean square error analysis. Operating parameters of the switched reluctance motor are improved significantly. Simulation environment is created in Matlab/Simulink

    Two Terminal Instantaneous Power-Based Fault Classification and Location Techniques for Transmission Lines

    No full text
    Transmission lines are an important part of the power system, as they are the carriers of power from one end to another. In the event of a fault, the power transferring process is disturbed and can even damage the equipment, which is attached to the generation end as well as the user end. Most of the power systems are connected to the transmission lines, so it is very important to make the transmission lines secure. For protection purposes, relays are used, but relays only trip in the event of a fault and do not tell us about the location of the fault. The power system requires a speedy protection system. For a speedy protection system, quick and fast fault analysis and classification are required. An effective approach for the analysis of the transmission line with three sources is proposed. This method is quite effective and accurate for locating the fault and classifying its types. This technique needs power measurement from both ends simultaneously for fault diagnosis. Instantaneous power and sign power values are used for fault detection and classification. A voltage profile is used to identify the fault location. For three-phase transmission lines, voltage profiles are built up at different segment points to locate the fault. The IEEE-9 bus system is simulated for this technique. MATLAB is employed for simulation purposes. The test system is simulated with different types of faults at different locations. Relay operation has not affected the accuracy of the system. This technique has an accuracy of more than 97%. This method is quite effective for the analysis of power transmission lines. It can discriminate the fault type, identify the faulty phase of the line, and locate the point of the fault. Faults are located with errors not more than 0.45%. Moreover, the time difference between the actual fault and the calculated fault obtained from the estimated location is not more than 0.004 s. Simulations are claimed to be executed in less computational time, ensuring effective and rapid protection against faults
    corecore