17 research outputs found

    Update on Fundamental Mechanisms of Thyroid Cancer

    Get PDF
    The incidence of thyroid cancer (TC) has increased worldwide over the past four decades. TC is divided into three main histological types: differentiated (papillary and follicular TC), undifferentiated (poorly differentiated and anaplastic TC), and medullary TC, arising from TC cells. This review discusses the molecular mechanisms associated to the pathogenesis of different types of TC and their clinical relevance. In the last years, progresses in the genetic characterization of TC have provided molecular markers for diagnosis, risk stratification, and treatment targets. Recently, papillary TC, the most frequent form of TC, has been reclassified into two molecular subtypes, named BRAF-like and RAS-like, associated to a different range of cancer risks. Similarly, the genetic characterization of follicular TC has been proposed to complement the new histopathological classification in order to estimate the prognosis. New analyses characterized a comprehensive molecular profile of medullary TC, raising the role of RET mutations. More recent evidences suggested that immune microenvironment associated to TC may play a critical role in tumor invasion, with potential immunotherapeutic implications in advanced and metastatic TC. Several types of ancillary approaches have been developed to improve the diagnostic value of fine needle aspiration biopsies in indeterminate thyroid nodules. Finally, liquid biopsy, as a non-invasive diagnostic tool for body fluid genotyping, brings a new prospective of disease and therapy monitoring. Despite all these novelties, much work remains to be done to fully understand the pathogenesis and biological behaviors of the different types of TC and to transfer this knowledge in clinical practice

    An in-frame complex germline mutation in the juxtamembrane intracellular domain causing RET activation in familial medullary thyroid carcinoma

    No full text
    An in-frame complex germline mutation in the juxtamembrane intracellular domain causing RET activation in familial medullary thyroid carcinom

    Oxidative Stress Correlates with More Aggressive Features in Thyroid Cancer

    No full text
    Oxidative stress (OS) can have an impact in the pathogenesis and in the progression of thyroid cancer. We investigated the levels of reactive oxygen species (ROS) in 50 malignant and benign thyroid lesions and 41 normal tissues, and correlated them with the thyroid differentiation score-TDS and the clinico-pathologic features. NOX4 expression, GPx activity and the genetic pattern of tumors were evaluated. In malignant and benign lesions, ROS generation and NOX4 protein expression were higher than in normal tissues. Follicular (FTCs) and anaplastic/poorly differentiated cancers had increased OS relative to papillary tumors (PTCs). Moreover, OS in FTCs was higher than in follicular adenomas. Mutated PTCs showed increased OS compared with non-mutated PTCs. In malignant tumors, OS was inversely correlated with TDS, and directly correlated with tumor stage and ATA risk. GPx activity was increased in tumors compared with normal tissues, and inversely correlated to OS. In conclusion, our data indicate that thyroid tumors are exposed to higher OS compared with normal tissues, while showing a compensative increased GPx activity. OS correlates with tumor aggressiveness and mutations in the MEK-ERK pathway in PTC. The inverse correlation between OS and TDS suggests that ROS may repress genes involved in thyroid differentiation

    The BRAF-inhibitor PLX4720 inhibits CXCL8 secretion in BRAFV600E mutated and normal thyroid cells: a further anti-cancer effect of BRAF-inhibitors

    Get PDF
    CXCL8 is a chemokine secreted by normal and thyroid cancer cells with proven tumor-promoting effects. The presence of BRAFV600E mutation is associated with a more aggressive clinical behavior and increased ability to secrete CXCL8 by papillary-thyroid-cancer cells. Aim of this study was to test the effect of the BRAF-inhibitor (PLX4720) on the basal and TNF-α-induced CXCL8 secretions in BRAFV600E mutated (BCPAP, 8305C, 8505C), in RET/PTC rearranged (TPC-1) thyroid-cancer-cell-lines and in normal-human-thyrocytes (NHT). Cells were incubated with increasing concentrations of PLX4720 alone or in combination with TNF-α for 24-hours. CXCL8 concentrations were measured in the cell supernatants. PLX4720 dose-dependently inhibited the basal and the TNF-α-induced CXCL8 secretions in BCPAP (F: 14.3, p < 0.0001 for basal and F: 12.29 p < 0.0001 for TNF-α), 8305C (F: 407.9 p < 0.0001 for basal and F: 5.76 p < 0.0001 for TNF-α) and 8505C (F:55.24 p < 0.0001 for basal and F: 42.85 p < 0.0001 for TNF-α). No effect was found in TPC-1 (F: 1.8, p = 0.134 for basal; F: 1.6, p = 0.178 for TNF-α). In NHT an inhibitory effect was found only at the highest concentration of PLX4720 (F: 13.13 p < 0.001 for basal and F: 2.5 p < 0.01 for TNF-α). Cell migration assays showed that PLX4720 reduced both basal and CXCL8-induced cell migration in BCPAP, 8305C, 8505C and NHT but not in TPC-1 cells. These results constitutes the first demonstration that PLX4720 is able to inhibit the secretion of CXCL8 in BRAFV600E mutated thyroid cancer cells indicating that, at least some, of the anti-tumor activities of PLX4720 could be exerted through a lowering of CXCL8 in the thyroid-cancer-microenvironment

    DUOX2/DUOXA2 Mutations Frequently Cause Congenital Hypothyroidism that Evades Detection on Newborn Screening in the United Kingdom.

    No full text
    Background: The etiology, course, and most appropriate management of borderline congenital hypothyroidism (CH) are poorly defined, such that the optimal threshold for diagnosis with bloodspot screening thyrotropin (bsTSH) measurement remains controversial. Dual oxidase 2 (DUOX2) mutations may initially cause borderline elevation of bsTSH, which later evolves into significant hypothyroidism on venous blood measurement. It was hypothesized that mutations in both DUOX2 and its accessory protein DUOXA2 may occur frequently, even in patients with borderline bsTSH elevation, such that higher diagnostic thresholds in bsTSH screening may fail to detect such cases, with consequent risk of undiagnosed neonatal hypothyroidism of sufficient magnitude to require thyroxine therapy. This study aimed to investigate the frequency and characteristics of DUOX2 and DUOXA2 mutations in a borderline CH cohort. Methods: A cross-sectional study of patients with borderline CH was undertaken at Great Ormond Street Hospital, a tertiary British pediatric center. DUOX2 was sequenced in 52 patients with a bsTSH of 6-19.9 mIU/L, venous TSH of >25 mIU/L, and eutopic thyroid gland in situ. DUOXA2 was sequenced in DUOX2 mutation-negative cases, and novel DUOXA2 mutations were functionally characterized. Results: A total of 26 (50%) patients harbored likely pathogenic mutations in DUOX2 (n = 20; 38%) or DUOXA2 (n = 6; 12%), including novel gene variants (DUOX2, n = 3; DUOXA2, n = 7). Two recurrent DUOX2 mutations (p.Q570L, p.F966Sfs*29) occurred frequently in population databases (MAF ≥0.01). Despite bsTSH being <10 mIU/L in 46% of DUOX2 and DUOXA2 mutation-positive cases, venous free thyroxine levels in these patients were in the moderate CH range (M = 9.3 pmol/L, range <3.9-15.8 pmol/L), Conclusions: Targeted DUOX2 and DUOXA2 sequencing in a borderline CH cohort has a high diagnostic yield. These findings might argue for a lowering of bsTSH thresholds, but follow-up studies are required to assess whether cases with borderline bsTSH harboring DUOX2/DUOXA2 mutations will benefit from an early diagnosis and subsequent levothyroxine treatment.This work was supported by Wellcome Trust Grant 100585/Z/12/Z and the National Institute for Health Research Biomedical Research Centres at Cambridge and Great Ormond Street Hospitals. The Genomics/ Transcriptomics Core Facility is supported by the UK Medical Research Council (MRC) Metabolic Disease Unit (MRC_MC_UU_12012/5) and a Wellcome Trust Strategic Award (100574/Z/12/Z)
    corecore