248 research outputs found

    THE DYNAMIC GEOMORPHIC SETTING OF THE LATE PLEISTOCENE HARTLEY MAMMOTH SITE: BURIAL AND SKELETAL PRESERVATION IN A SLUMP-BLOCK DEPRESSION NEAR ABIQUIU, NEW MEXICO

    Get PDF
    Near Abiquiu in northern New Mexico, the skeletal remains of two mammoths were discovered in the summer of 2014 in the near-surface deposits of a very small alluvial channel. The channel occupies a depression on the backtilted top of a Toreva slump block, a highly unusual setting for a mammoth burial. Geomorphological investigation of the site has provided insight into processes leading to burial and preservation of the remains, as well as local environmental change. Field mapping of sediment sources and LiDAR scans of the contributing slope basin and slump bench provided a map of geomorphic features and surficial geologic deposits. To better understand the geomorphic context of the mammoth remains, termed the ‘Hartley Mammoth,’ six soil pits from the mapped surficial geologic deposits were described in the field. Bedrock and soil samples were analyzed using x-ray fluorescence (XRF), loss on ignition (LOI), x-ray diffraction (XRD) and particle size analysis. Bone collagen from a limb fragment returned a calibrated 14C age for one mammoth of about 33 ka. On the mammoth site slump bench, discontinuous bouldery footslope colluvial deposits show clay films and stage l to l+ carbonate, and were likely deposited shortly following slumping due to failure of oversteepened slump scarps. The deposit surrounding the mammoth remains consists of cobbles and small boulders of sandstone supported by a muddy matrix; this texture strongly suggests that the remains were buried by a debris flow. The debris-flow deposit created a high point in the channel, so that subsequent flow was diverted off the downslope edge of the slump block, protecting the mammoth remains from later erosion. Ped-face carbonate coatings (stage I+) in the debris-flow deposit indicate a greater age than the relatively well-sorted and stratified alluvial deposits in the channel above the debris flow. Following mammoth burial, incremental deposition of finer footslope colluvium continued to the present. Overall, field observations, XRF and XRD analyses indicate that despite the ~33 ka age of the mammoth, very little chemical weathering and limited soil development has occurred in the debris flow and other surficial deposits of apparent late Pleistocene age in this dynamic environment

    Non-voting shares in France : an empirical analysis of the voting premium

    Get PDF
    It is the objective of this paper to determine the voting premium for French shares by comparing the values of voting and non-voting shares, and to analyze the value of the voting rights. The study uses data for 25 French companies which had both types of shares outstanding and traded on the stock exchange during the entire period from 1986 to 1996, or for some time during this interval. The average value of the voting premium is 51,35%. The paper analyzes the reasons for this surprisingly high value by testing different hypotheses based on dividend differences, the revival) of the voting right, capitalization, shareholder structure, and the share of non-voting capital in total equity capital. The regressions show that the shareholder structure strongly influences the value of the voting premium. A case study of the attempted takeover of Casino by Promodes shows that investors attach a much higher value to the voting right during relevant situations than at other tomes. Both companies involved had, at the time, two types of shares outstanding and listed. Furthermore the paper shows that non-voting shares have never played an important role in equity finance in France since the companies have different alternatives. In an international cumparison, France is found to have the second highest voting premium, exceeded only by that of Italy. A probable reason is the low quality of the national accounting standards and the low level of minority shareholder protection.Le but de ce cahier de recherche est l'evaluation du droit de vote en France par une comparaison des actiuns avec et sans droit de vote. L 'analyse est basee sur 25 societes ayant introduit ces deux types d'actions en bourse pendant une partie ou fa totalite des annees 1986-1996, Nous determinons pour cette echantillon l'existence d'une prime moyenne de 51,35% sur les actions sails droit de vote. A travers le test de differentes hypotheses (difference de dividende, reprise du droit de vote, capitalisation, actionnarial et pourcentage du capital sans droil de vote), nous essayons ensuite d'expliquer l'importallce de cette prime. Les regressiuns indiquent que la structure de I 'actionnariat influence jortement la prime. Le cas pratique de l'OPA Promodes sur Casino -ces deux societes ayant introduit deux classes d 'actions en bourse- montre investisseurs donnenl une valeur plus importante au droit de vote pendant des situations critiques. L 'histoire du financement des entreprises montre que les actions sans droit de vote n 'ont jamais joue un role important parce qu'il existe d'autres alternatives moins cheres. Au niveau international, la France presente la 2eme prime fa plus elevee apres l'Italie. L'explication du niveau de ces differents primes est a chercher dans les normes comptables et dans la protection des actionnaires minoritaires

    Central Nervous System Targets and Routes for SARS-CoV-2: Current Views and New Hypotheses

    Get PDF
    As the coronavirus disease 2019 (COVID-19) pandemic unfolds, neurological signs and symptoms reflect the involvement of targets beyond the primary lung effects. The etiological agent of COVID-19, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits neurotropism for central and peripheral nervous systems. Various infective mechanisms and paths can be exploited by the virus to reach the central nervous system, some of which bypass the blood-brain barrier; others alter its integrity. Numerous studies have established beyond doubt that the membrane-bound metalloprotease angiotensin-converting enzyme 2 (ACE2) performs the role of SARS-CoV-2 host-cell receptor. Histochemical studies and more recently transcriptomics of mRNA have dissected the cellular localization of the ACE2 enzyme in various tissues, including the central nervous system. Epithelial cells lining the nasal mucosae, the upper respiratory tract, and the oral cavity, bronchoalveolar cells type II in the pulmonary parenchyma, and intestinal enterocytes display ACE2 binding sites at their cell surfaces, making these epithelial mucosae the most likely viral entry points. Neuronal and glial cells and endothelial cells in the central nervous system also express ACE2. This short review analyzes the known entry points and routes followed by the SARS-CoV-2 to reach the central nervous system and postulates new hypothetical pathways stemming from the enterocytes lining the intestinal lumen.Fil: Barrantes, Francisco Jose. Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentin

    A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila

    Get PDF
    Development of effective malaria vaccines is hampered by the problem of producing correctly folded Plasmodium proteins for use as vaccine components. We have investigated the use of a novel ciliate expression system, Tetrahymena thermophila, as a P. falciparum vaccine antigen platform. A synthetic vaccine antigen composed of N-terminal and C-terminal regions of merozoite surface protein-1 (MSP-1) was expressed in Tetrahymena thermophila. The recombinant antigen was secreted into the culture medium and purified by monoclonal antibody (mAb) affinity chromatography. The vaccine was immunogenic in MF1 mice, eliciting high antibody titers against both N- and C-terminal components. Sera from immunized animals reacted strongly with P. falciparum parasites from three antigenically different strains by immunofluorescence assays, confirming that the antibodies produced are able to recognize parasite antigens in their native form. Epitope mapping of serum reactivity with a peptide library derived from all three MSP-1 Block 2 serotypes confirmed that the MSP-1 Block 2 hybrid component of the vaccine had effectively targeted all three serotypes of this polymorphic region of MSP-1. This study has successfully demonstrated the use of Tetrahymena thermophila as a recombinant protein expression platform for the production of malaria vaccine antigens

    Transcriptional states and chromatin accessibility underlying human erythropoiesis

    Get PDF
    Human erythropoiesis serves as a paradigm of physiologic cellular differentiation. This process is also of considerable interest for better understanding anemias and identifying new therapies. Here, we apply deep transcriptomic and accessible chromatin profiling to characterize a faithful ex vivo human erythroid differentiation system from hematopoietic stem and progenitor cells. We reveal stage-specific transcriptional states and chromatin accessibility during various stages of erythropoiesis, including 14,260 differentially expressed genes and 63,659 variably accessible chromatin peaks. Our analysis suggests differentiation stage-predominant roles for specific master regulators, including GATA1 and KLF1. We integrate chromatin profiles with common and rare genetic variants associated with erythroid cell traits and diseases, finding that variants regulating different erythroid phenotypes likely act at variable points during differentiation. In addition, we identify a regulator of terminal erythropoiesis, TMCC2, more broadly illustrating the value of this comprehensive analysis to improve our understanding of erythropoiesis in health and disease

    Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells

    Get PDF
    The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2(+)TMPRSS2(+) cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis

    Status of Biodiversity in the Baltic Sea

    Get PDF
    The brackish Baltic Sea hosts species of various origins and environmental tolerances. These immigrated to the sea 10,000 to 15,000 years ago or have been introduced to the area over the relatively recent history of the system. The Baltic Sea has only one known endemic species. While information on some abiotic parameters extends back as long as five centuries and first quantitative snapshot data on biota (on exploited fish populations) originate generally from the same time, international coordination of research began in the early twentieth century. Continuous, annual Baltic Sea-wide long-term datasets on several organism groups (plankton, benthos, fish) are generally available since the mid-1950s. Based on a variety of available data sources (published papers, reports, grey literature, unpublished data), the Baltic Sea, incl. Kattegat, hosts altogether at least 6,065 species, including at least 1,700 phytoplankton, 442 phytobenthos, at least 1,199 zooplankton, at least 569 meiozoobenthos, 1,476 macrozoobenthos, at least 380 vertebrate parasites, about 200 fish, 3 seal, and 83 bird species. In general, but not in all organism groups, high sub-regional total species richness is associated with elevated salinity. Although in comparison with fully marine areas the Baltic Sea supports fewer species, several facets of the system's diversity remain underexplored to this day, such as micro-organisms, foraminiferans, meiobenthos and parasites. In the future, climate change and its interactions with multiple anthropogenic forcings are likely to have major impacts on the Baltic biodiversity

    Beyond NIMBYs and NOOMBYs:what can wind farm controversies teach us about public involvement in hospital closures?

    Get PDF
    Background Many policymakers, researchers and commentators argue that hospital closures are necessary as health systems adapt to new technological and financial contexts, and as population health needs in developed countries shift. However closures are often unpopular with local communities. Previous research has characterised public opposition as an obstacle to change. Public opposition to the siting of wind farms, often described as NIMBYism (Not In My Back Yard), is a useful comparator issue to the perceived NOOMBYism (Not Out Of My Back Yard) of hospital closure protestors. Discussion The analysis of public attitudes to wind farms has moved from a fairly crude characterisation of the ‘attitude-behaviour gap’ between publics who support the idea of wind energy, but oppose local wind farms, to empirical, often qualitative, studies of public perspectives. These have emphasised the complexity of public attitudes, and revealed some of the ‘rational’ concerns which lie beneath protests. Research has also explored processes of community engagement within the wind farm decision-making process, and the crucial role of trust between communities, authorities, and developers. Summary Drawing on what has been learnt from studies of opposition to wind farms, we suggest a range of questions and approaches to explore public perspectives on hospital closure more thoroughly. Understanding the range of public responses to service change is an important first step in resolving the practical dilemma of effecting health system transformation in a democratic fashion
    • …
    corecore