956 research outputs found
The informal housing development process in Nigeria: the case of Kaduna
Housing developments in informal areas usually occur in the emerging parts of a Nigerian city, on the periphery. Land in customary tenure/ownership is being sold on the ‘free’ market and turned into ‘informal’ layouts without the official recognition of or approval by government. This report is based on research carried out in the northern Nigerian city of Kaduna over a number of years.
Kaduna, together with Kano, the two wealthiest and largest cities in the North West Zone of Nigeria, despite the current economic and political problems , are still expanding rapidly though natural growth combined with in-migration. The evidence is that informal housing development on the urban periphery in both cities is increasing at a stupendous rate and this is where most new households in these cities are being housed.
Informal housing currently meets around 90% of Nigeria's housing demand. The report argues in favour of new forms of, and attitudes to urban governance that work with the and manage the informal housing supply system rather than against it
Formaldehyde induces micronuclei in mouse erythropoietic cells and suppresses the expansion of human erythroid progenitor cells
Although formaldehyde (FA) has been classified as a human leukemogen, the mechanisms of leukemogenesis remain elusive. Previously, using colony-forming assays in semi-solid media, we showed that FA exposure in vivo and in vitro was toxic to human hematopoietic stem/progenitor cells. In the present study, we have applied new liquid in vitro erythroid expansion systems to further investigate the toxic effects of FA (0-150 μM) on cultured mouse and human hematopoietic stem/progenitor cells. We determined micronucleus (MN) levels in polychromatic erythrocytes (PCEs) differentiated from mouse bone marrow. We measured cell growth, cell cycle distribution, and chromosomal instability, in erythroid progenitor cells (EPCs) expanded from human peripheral blood mononuclear cells. FA significantly induced MN in mouse PCEs and suppressed human EPC expansion in a dose-dependent manner, compared with untreated controls. In the expanded human EPCs, FA slightly increased the proportion of cells in G2/M at 100 μM and aneuploidy frequency in chromosomes 7 and 8 at 50 μM. Our findings provide further evidence of the toxicity of FA to hematopoietic stem/progenitor cells and support the biological plausibility of FA-induced leukemogenesis
Benchmarking of copper(II) LFMM parameters for studying amyloid-β peptides
Ligand field molecular mechanics (LFMM) parameters have been benchmarked for copper (II) bound to the amyloid-β1–16 peptide fragment. Several density functional theory (DFT) optimised small test models, representative of different possible copper coordination modes, have been used to test the accuracy of the LFMM copper bond lengths and angles, resulting in errors typically less than 0.1 Å and 5°. Ligand field molecular dynamics (LFMD) simulations have been carried out on the copper bound amyloid-β1–16 peptide and snapshots extracted from the subsequent trajectory. Snapshots have been optimised using DFT and the semi-empirical PM7 method resulting in good agreement against the LFMM calculated geometry. Analysis of substructures within snapshots shows that the larger contribution of geometrical difference, as measured by RMSD, lies within the peptide backbone, arising from differences in DFT and AMBER, and the copper coordination sphere is reproduced well by LFMM. PM7 performs excellently against LFMM with an average RMSD of 0.2 Å over 21 tested snapshots. Further analysis of the LFMD trajectory shows that copper bond lengths and angles have only small deviations from average values, with the exception of a carbonyl moiety from the N-terminus, which can act as a weakly bound fifth ligand
Metal binding to amyloid-β1–42: a ligand field molecular dynamics study
Ligand field molecular mechanics simulation has been used to model the interactions of copper(II) and platinum(II) with the amyloid-β1–42 peptide monomer. Molecular dynamics over several microseconds for both metalated systems are compared to analogous results for the free peptide. Significant differences in structural parameters are observed, both between Cu and Pt bound systems as well as between free and metal-bound peptide. Both metals stabilize the formation of helices in the peptide as well as reducing the content of β secondary structural elements compared to the unbound monomer. This is in agreement with experimental reports of metals reducing β-sheet structures, leading to formation of amorphous aggregates over amyloid fibrils. The shape and size of the peptide structures also undergo noteworthy change, with the free peptide exhibiting globular-like structure, platinum(II) system adopting extended structures, and copper(II) system resulting in a mixture of conformations similar to both of these. Salt bridge networks exhibit major differences: the Asp23-Lys28 salt bridge, known to be important in fibril formation, has a differing distance profile within all three systems studied. Salt bridges in the metal binding region of the peptide are strongly altered; in particular, the Arg5-Asp7 salt bridge, which has an occurrence of 71% in the free peptide, is reduced to zero in the presence of both metals
Cracked mercury dental amalgam as a possible cause of fever of unknown origin: a case report
<p>Abstract</p> <p>Introduction</p> <p>Sudden fever of unknown origin is quite a common emergency and may lead to hospitalization. A rise in body temperature can be caused by infectious diseases and by other types of medical condition. This case report is of a woman who had fever at night for several days and other clinical signs which were likely related to cracked dental mercury amalgam.</p> <p>Case presentation</p> <p>A healthy women developed fever many days after had cracked a mercury dental amalgam filling. Blood tests evidenced increased erythrocyte sedimentation rate, anemia and elevated white cell count; symptoms were headache and palpitations. Blood tests and symptoms normalized within three weeks of removal of the dental amalgam.</p> <p>Conclusion</p> <p>This case highlights the possible link between mercury vapor exposure from cracked dental amalgam and early activation of the immune system leading to fever of unknown origin.</p
Molecular dynamics simulations of copper binding to amyloid-β Glu22 mutants
We report microsecond timescale ligand field molecular dynamics simulations of the copper complexes of three known mutants of the amyloid-β peptide, E22G, E22Q and E22K, alongside the naturally occurring sequence. We find that all three mutants lead to formation of less compact structures than the wild-type: E22Q is the most similar to the native peptide, while E22G and especially E22K are markedly different in size, shape and stability. Turn and coil structures dominate all structures studied but subtle differences in helical and β-sheet distribution are noted, especially in the C-terminal region. The origin of these changes is traced to disruption of key salt bridges: in particular, the Asp23-Lys28 bridge that is prevalent in the wild-type is absent in E22G and E22K, while Lys22 in the latter mutant forms a strong association with Asp23. We surmise that the drastically different pattern of salt bridges in the mutants lead to adoption of a different structural ensemble of the peptide backbone, and speculate that this might affect the ability of the mutant peptides to aggregate in the same manner as known for the wild-type
Weak Gravity Conjecture and Holographic Dark Energy Model with Interaction and Spatial Curvature
In the paper, we apply the weak gravity conjecture to the holographic
quintessence model of dark energy. Three different holographic dark energy
models are considered: without the interaction in the non-flat universe; with
interaction in the flat universe; with interaction in the non-flat universe. We
find that only in the models with the spatial curvature and interaction term
proportional to the energy density of matter, it is possible for the weak
gravity conjecture to be satisfied.Comment: 14 pages, 7 figures, typographical errors are corrected; conclusin is
unchange
Replica exchange molecular dynamics simulation of the coordination of Pt(ii)-Phenanthroline to amyloid-βâ€
We report replica exchange molecular dynamics (REMD) simulations of the complex formed between amyloid-β peptides and platinum bound to a phenanthroline ligand, Pt(phen). After construction of an AMBER-style forcefield for the Pt complex, REMD simulation employing temperatures between 270 and 615 K was used to provide thorough sampling of the conformational freedom available to the peptide. We find that the full length peptide Aβ42, in particular, frequently adopts a compact conformation with a large proportion of α- and 3,10-helix content, with smaller amounts of β-strand in the C-terminal region of the peptide. Helical structures are more prevalent than in the metal-free peptide, while turn and strand conformations are markedly less common. Non-covalent interactions, including salt-bridges, hydrogen bonds, and π-stacking between aromatic residues and the phenanthroline ligand, are common, and markedly different from those seen in the amyloid-β peptides alone
Simulation of the thermally induced austenitic phase transition in NiTi nanoparticles
The reverse martensitic ("austenitic") transformation upon heating of
equiatomic nickel-titanium nanoparticles with diameters between 4 and 17 nm is
analyzed by means of molecular-dynamics simulations with a semi-empirical model
potential. After constructing an appropriate order parameter to distinguish
locally between the monoclinic B19' at low and the cubic B2 structure at high
temperatures, the process of the phase transition is visualized. This shows a
heterogeneous nucleation of austenite at the surface of the particles, which
propagates to the interior by plane sliding, explaining a difference in
austenite start and end temperatures. Their absolute values and dependence on
particle diameter are obtained and related to calculations of the surface
induced size dependence of the difference in free energy between austenite and
martensite.Comment: 6 pages, 4 figures, accepted for publication in "The European
Physical Journal B
- …