11 research outputs found

    The characterization of DNAJC3: elucidating the function of the TPR domains

    Get PDF
    DNAJC3 is a novel member of the DNAJ family with two domains linked to co-chaperone functions, namely the tetratricopeptide repeat (TPR) and J domain. Out of the two domains, the TPR domains are the least characterized. Therefore, the aim of this study was to characterize and elucidate additional functions of DNAJC3 TPR domains through in silico, in vitro and ex vivo approaches. Through multiple sequence and structural alignment as well as electrostatic potential analysis, DNAJC3 TPR domain were found to be most similar to TPR-containing proteins with Hsp90 or Hsp70 independent functions. In vitro pull down assays illustrated that DNAJC3 TPR domains did not interact with either cytosolic Hsp90 and Hsp70 or Grp78 and Grp94 directly, however a potential indirect interaction with Grp94 and Hsp90 was observed in mammalian lysates, via pull down assays; suggesting the formation of a complex between the proteins mediated by a specific substrate. DNAJC3 TPR domains were found to bind indiscriminately to both native and heat denatured substrates in a dose dependent manner. DNAJC3 TPR domains bound to Ī²-galactosidase with greater affinity than malate dehydrogenase (MDH), suggesting that DNAJC3 TPR domains might exhibit substrate specificity that has not been reported before. Preliminary ex vivo analysis of DNAJC3 in mammalian cells showed that induced stress conditions did not alter the cytosolic or endoplasmic reticulum (ER) localization, or levels of DNAJC3 protein, suggesting that the protein is not stress inducible. However, protein levels of DNAJC3 were dramatically reduced by Hsp90 inhibitor novobiocin at 500 Ī¼M. Transient knockdown DNAJC3 did not change the protein levels of either Grp78 or Grp94, but decreased the protein levels of Hsp70/Hsp90 organizing protein HOP. On the other hand, protein levels of DNAJC3 were increased in HOP depleted cells. In conclusion, this study was the first to experimentally demonstrate that DNAJC3 TPR domains do not interact directly with Hsp90, Hsp70, Grp78 or Grp94, and therefore DNAJC3 is unlikely to participate in traditional co-chaperone interactions with those proteins via its TPR domain. However, the J domain is known to interact with Grp78. The discovery that DNAJC3 TPR domains resemble that of TPR-containing proteins with functions independent of Hsp90 or Hsp70 suggests that DNAJC3 might link the Hsp70/Grp78 chaperone machinery to non co-chaperone related functions, which requires further analysis

    Kaposi Sarcoma-Associated Herpesvirus Glycoprotein H Is Indispensable for Infection of Epithelial, Endothelial, and Fibroblast Cell Types

    Get PDF
    Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the virus initiates acute primary infection in vivo in diverse human cell types. The role of glycoprotein H (gH) in herpesvirus entry mechanisms remains largely unresolved. To characterize the requirement for KSHV gH in the viral life cycle and in determination of cell tropism, we generated and characterized a mutant KSHV in which expression of gH was abrogated. Using a bacterial artificial chromosome containing a complete recombinant KSHV genome and recombinant DNA technology, we inserted stop codons into the gH coding region. We used electron microscopy to reveal that the gH-null mutant virus assembled and exited from cells normally, compared to wild-type virus. Using purified virions, we assessed infectivity of the gH-null mutant in diverse mammalian cell types in vitro. Unlike wild-type virus or a gH-containing revertant, the gH-null mutant was unable to infect any of the epithelial, endothelial, or fibroblast cell types tested. However, its ability to infect B cells was equivocal and remains to be investigated in vivo due to generally poor infectivity in vitro. Together, these results suggest that gH is critical for KSHV infection of highly permissive cell types, including epithelial, endothelial, and fibroblast cells. IMPORTANCE All homologues of herpesvirus gH studied to date have been implicated in playing an essential role in viral infection of diverse permissive cell types. However, the role of gH in the mechanism of KSHV infection remains largely unresolved. In this study, we generated a gH-null mutant KSHV and provided evidence that deficiency of gH expression did not affect viral particle assembly or egress. Using the gH-null mutant, we showed that gH was indispensable for KSHV infection of epithelial, endothelial, and fibroblast cells in vitro. This suggests that gH is an important target for the development of a KSHV prophylactic vaccine to prevent initial viral infection

    Kaposi Sarcoma-associated Herpesvirus Glycoprotein H is Indispensable for Infection of Epithelial, Endothelial, and Fibroblast Cell Types

    Get PDF
    Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the virus initiates acute primary infection in vivo in diverse human cell types. The role of glycoprotein H (gH) in herpesvirus entry mechanisms remains largely unresolved. To characterize the requirement for KSHV gH in the viral life cycle and in determination of cell tropism, we generated and characterized a mutant KSHV in which expression of gH was abrogated. Using a bacterial artificial chromosome containing a complete recombinant KSHV genome and recombinant DNA technology, we inserted stop codons into the gH coding region. We used electron microscopy to reveal that the gH-null mutant virus assembled and exited from cells normally, compared to wild-type virus. Using purified virions, we assessed infectivity of the gH-null mutant in diverse mammalian cell types in vitro Unlike wild-type virus or a gH-containing revertant, the gH-null mutant was unable to infect any of the epithelial, endothelial, or fibroblast cell types tested. However, its ability to infect B cells was equivocal, and remains to be investigated in vivo due to generally poor infectivity in vitro Together, these results suggest that gH is critical for KSHV infection of highly permissive cell types including epithelial, endothelial, and fibroblasts. MPORTANCE: All homologues of herpesvirus gH studied to date have been implicated in playing an essential role in viral infection of diverse permissive cell types. However, the role of gH in the mechanism of KSHV infection remains largely unresolved. In this study, we generated a gH-null mutant KSHV and provided evidence that deficiency of gH expression did not affect viral particle assembly or egress. Using the gH-null mutant, we showed that gH was indispensable for KSHV infection of epithelial, endothelial, and fibroblast cells in vitro. This suggests that gH is an important target for the development of a KSHV prophylactic vaccine to prevent initial viral infection

    Investigating the role of heat shock proteins 40, 70 and 90 in the life cycle of a picornavirus, Theiler's murine encephalomyelitis virus

    No full text
    Introduction: Picornaviruses are a family of RNA viruses which are economically and clinically significant. Like many other viruses, picornaviruses utilise host cell machinery to facilitate their replication and assembly, including heat shock proteins (Hsps). The aim of this research was to investigate the role of Hsp40, Hsp70 and Hsp90 during picornavirus infection using the cardiovirus, Theilerā€™s murine encephalomyelitis virus (TMEV), as a study model. Methodology: Picornavirus VP1 capsid proteins were analysed by multiple sequence alignment and multiple structural comparisons. Protein domain architecture was used to analyse Hsp90 cellular and viral client proteins. Effects of Hsp90 inhibitors, novobiocin and geldanamycin, on TMEV growth in BHK-21 cells was observed over a 48hr period. Localisation of Hsp40, Hsp90 and Hsp70 in TMEV-infected BHK-21 cells was investigated by indirect immunofluorescence and confocal microscopy. Results and Discussion: VP1 proteins of picornaviruses are highly divergent within the family at the amino acid level, which might be linked to the proteinā€™s function in determining virus tropism and antibody neutralisation. An eight-stranded anti-parallel beta-barrel structure was found conserved in the VP1 protein structures which might be linked to the highly conserved picornavirus capsid assembly process. Absence of a common protein domain between Hsp90 viral and cellular client proteins that might be functionally connected to Hsp90, suggests that Hsp90 most likely recognises surface features rather than sequence motifs/patterns. The Hsp90 inhibitors, novobiocin and geldanamycin, had a negative effect on virus growth as virus-induced cytopathic effect was not observed in treated cell after 48hrs. TMEV 2C protein was detected by Western analysis in infected cell lysates treated with geldanamycin but not novobiocin, suggesting novobiocin affects the translation or processing of TMEV 2C. Immunofluorescence analysis of TMEV-infected cells showed a relocalisation of Hsp40 into the nucleus during infection. Overlap of Hsp40 and TMEV P1 was observed in the perinuclear region, suggesting colocalisation between these proteins. Hsp70 converged around the replication complex during infection but did not overlap with TMEV 2C. Hsp90 concentrated in the region of the replication complex where it overlapped with TMEV 2C and this redistribution was found to be dependent on the stage of infection. The overlap between Hsp90 and TMEV 2C signals observed, suggested colocalisation between the two proteins. Conclusion: This study identified Hsp90, Hsp70 and Hsp40 as possible host factors required in TMEV replication

    Localisation of Theiler's murine encephalomyelitis virus protein 2C to the golgi apparatus using antibodies generated against a peptide region:

    No full text
    The picornavirus 2C protein is highly conserved and indispensible for virus replication. Polyclonal antibodies against Theiler's murine encephalomyelitis virus (TMEV) 2C protein were generated by immunisation of rabbits with a peptide comprising amino acids 31ā€“210 of the protein. Antibodies were used to investigate the localisation of 2C in infected cells by indirect immunofluorescence and confocal microscopy. Analysis of infected cells revealed that the distribution of 2C changed during infection

    A Pentavalent Epstein-Barr Virus-Like Particle Vaccine Elicits High Titers of Neutralizing Antibodies against Epstein-Barr Virus Infection in Immunized Rabbits

    No full text
    Primary infection with Epstein-Barr virus (EBV) is associated with acute infectious mononucleosis, whereas persistent infection is associated with chronic diseases such as autoimmune diseases and various types of cancer. Indeed, approximately 2% of all new cancer cases occurring annually worldwide are EBV-associated. Currently, there is no licensed EBV prophylactic vaccine. Selection of appropriate viral protein subunits is critical for development of an effective vaccine. Although the major EBV surface glycoprotein gp350/220 (gp350) has been proposed as an important prophylactic vaccine target, attempts to develop a potent vaccine based on gp350 alone have shown limited success in the clinic. We provide data showing that five EBV glycoproteins (gp350, gB, gp42, gH, and gL) involved in viral entry and infection can successfully be incorporated on the surface of EBV-like particles (EBV-LPs). These EBV-LPs, when administered together with aluminum hydroxide and monophosphoryl lipid A as adjuvants to New Zealand white rabbits, elicited EBV glycoprotein-specific antibodies capable of neutralizing viral infection in vitro in both B cells and epithelial cells, better than soluble gp350 ectodomain. Our findings suggest that a pentavalent EBV-LP formulation might be an ideal candidate for development as a safe and immunogenic EBV vaccine

    Breast cancer: current developments in molecular approaches to diagnosis and treatment

    No full text
    Due to the high heterogeneity of breast cancers, numerous recent patents describe improved methods of detection and classification which promise better patient prognosis and treatment. In particular, there has been a shift towards more effective genetic screening to identify specific mutations associated with breast tumours, which may lead to ā€œpersonalised medicineā€ with improved outcomes. Two challenging areas of breast cancer research involve the development of treatments for the highly aggressive triple negative breast cancer subtype as well as the chemotherapy-resistant cancer stem cell subpopulation. In addition, despite numerous recent advances in breast cancer treatment in woman, male breast cancer remains poorly understood and there are limited therapies available which are developed specifically for men. This review serves to report on important developments in the treatment of breast malignancies patented in the past two years as well as to highlight the current gaps in the field of breast cancer therapeutics and areas which require further study
    corecore