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ABSTRACT 24 

Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent 25 

of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. 26 

Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the 27 

virus initiates acute primary infection in vivo in diverse human cell types. The role of glycoprotein H (gH) in 28 

herpesvirus entry mechanisms remains largely unresolved. To characterize the requirement for KSHV gH in the 29 

viral life cycle and in determination of cell tropism, we generated and characterized a mutant KSHV in which 30 

expression of gH was abrogated. Using a bacterial artificial chromosome containing a complete recombinant 31 

KSHV genome and recombinant DNA technology, we inserted stop codons into the gH coding region. We used 32 

electron microscopy to reveal that the gH-null mutant virus assembled and exited from cells normally, 33 

compared to wild-type virus. Using purified virions, we assessed infectivity of the gH-null mutant in diverse 34 

mammalian cell types in vitro. Unlike wild-type virus or a gH-containing revertant, the gH-null mutant was 35 

unable to infect any of the epithelial, endothelial, or fibroblast cell types tested. However, its ability to infect B 36 

cells was equivocal, and remains to be investigated in vivo due to generally poor infectivity in vitro. Together, 37 

these results suggest that gH is critical for KSHV infection of highly permissive cell types including epithelial, 38 

endothelial, and fibroblasts. 39 

 40 

IMPORTANCE 41 

All homologues of herpesvirus gH studied to date have been implicated in playing an essential role in viral 42 

infection of diverse permissive cell types. However, the role of gH in the mechanism of KSHV infection 43 

remains largely unresolved. In this study, we generated a gH-null mutant KSHV and provided evidence that 44 

deficiency of gH expression did not affect viral particle assembly or egress. Using the gH-null mutant, we 45 

showed that gH was indispensable for KSHV infection of epithelial, endothelial, and fibroblast cells in vitro. 46 
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This suggests that gH is an important target for the development of a KSHV prophylactic vaccine to prevent 47 

initial viral infection. 48 

49 
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INTRODUCTION 50 

The oncogenic human Kaposi sarcoma-associated herpesvirus (KSHV), also known as human 51 

herpesvirus 8 (HHV-8), is a member of the γ-herpesvirus subfamily of the Herpesviridae family, which also 52 

includes Epstein-Barr virus (EBV) (1, 2). KSHV is the etiologic agent of Kaposi sarcoma (KS), the most 53 

common AIDS-associated cancer, as well as two malignancies of B cell origin, primary effusion lymphoma and 54 

multicentric Castleman disease (3, 4). KSHV can be transmitted via sexual contact, as well as through non-55 

sexual routes, including contaminated blood transfusion, tissue transplant, or saliva contact, especially in 56 

children residing in endemic areas (5-10). KS is a major cause of morbidity and mortality in adults in sub-57 

Saharan Africa, and is an emerging pediatric disease in children living with human immunodeficiency virus 58 

(11). The disease burden is exacerbated by a lack of preventive vaccines or effective KSHV-specific therapies 59 

to date. Although much research has focused on understanding the mechanism by which KSHV initiates 60 

primary infection and achieves broad tropism for diverse cell types [see reviews (12, 13)], the mechanisms 61 

defining KSHV cell tropism remain poorly characterized, due in part to a lack of animal models to test viral 62 

pathogenesis, and a limited spectrum of cultured cell lines that support lytic viral replication (14). This lack of 63 

knowledge continues to limit development of an effective vaccine against KSHV and its associated 64 

malignancies. 65 

The genome of KSHV is 138,146 base pairs long (15, 16) and encodes for approximately 90 open 66 

reading frames (ORFs). It shows genetic homology to γ-1 EBV, γ-2 herpesvirus saimiri, and rhesus monkey 67 

rhadinovirus (1, 17, 18). Like other members of the Herpesviridae family, the large genome of KSHV encodes 68 

genes with diverse functions in distinct steps of the viral life cycle in host cells (19-21). In vivo, KSHV has been 69 

detected in B cells, epithelial cells, endothelial cells, fibroblasts, monocytes, and para-endothelial spindle cells 70 

(22, 23). In vitro, it broadly infects B cell, epithelial, endothelial, monocyte, and fibroblast cell lines of human 71 

and non-human origins (13, 24). KSHV enters permissive target cells through a multi-step process that involves 72 
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interactions between multiple viral envelope glycoproteins and host cell receptors that mediate viral attachment, 73 

fusion, entry, replication, assembly, egress, and even latency (25).  74 

Cellular receptors and KSHV glycoproteins involved in viral infection have been well studied in various 75 

in vitro model infection systems. The KSHV envelope glycoproteins implicated in virus–cell attachment, 76 

fusion, and viral entry are ORF8 (gB), ORF22 (gH), ORF47 (gL), and K8.1. Both gB and K8.1 are thought to 77 

initiate viral entry through binding to host cell surface heparan sulfate proteoglycans on target cells to initiate 78 

infection in epithelial, endothelial, and fibroblast cell types (26-29). Similarly, some in vitro studies have 79 

implicated dendritic cell-specific adhesion molecule 3 (ICAM-3)-grabbing non-integrin (DC-SIGN) and cystine 80 

transporter xCT in viral entry (30, 31). Upon binding, conformational changes occur that are thought to allow 81 

the gH/gL complex to gain access to specific host cell receptors, including integrins and the erythropoietin-82 

producing hepatocellular (Eph) receptors A2 (EphA2), EphA4, and EphA7 (32-34). Intriguingly, B cell lines 83 

have been reported to lack the ext1 enzyme that promotes glycosylation in heparan sulphate biosynthesis and 84 

were recently shown to lack expression of EphA2 (27, 35). This may explain why they are refractory to KSHV 85 

infection in vitro (25, 27, 28, 35, 36). 86 

Working in concert with various non-conserved glycoproteins specific to each individual virus, the core 87 

conserved glycoproteins gB, gH, and gL, which are conserved among all herpesviruses, are thought to be 88 

necessary and sufficient for membrane attachment, fusion, and entry of all herpesviruses (37). In the current 89 

model of γ-herpesvirus entry, the virus attaches to host cell receptors through its non-conserved glycoproteins 90 

(e.g. gp350 or K8.1), which signals gH/gL to activate the gB fusogen. In this way, the gH/gL complex functions 91 

as an adaptor that transmits the triggering signal and activates viral fusion to the host cell membrane (37). 92 

However, the exact mechanisms behind these glycoprotein interactions, and how these interactions facilitate 93 

viral entry and modify viral tropism, remain poorly understood. Elucidating these mechanisms is challenging 94 

because the interactions are often transient and/or of low affinity. Unique among the core conserved proteins is 95 

the requirement for gH homologs to associate with gL and/or other proteins, depending on the type of 96 
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herpesvirus, in order to be correctly folded, transported within the infected cell, and incorporated into the viral 97 

envelope to ultimately modulate viral tropism (37). For instance, EBV gH forms a heterotrimeric complex with 98 

gL and gp42 (gH/gL-gp42), which subsequently enables binding of the N-terminal domain of gp42 to HLA 99 

class II to facilitate EBV infection of human B cells (38, 39). In contrast, the presence of gp42 inhibits EBV 100 

fusion and entry into epithelial cells (40-42). Although KSHV gH is known to form a heterodimeric complex 101 

with gL (gH/gL) via a non-covalent linkage in which the N-terminus of gH interacts with gL (26), whether 102 

KSHV gH/gL also complexes with additional envelope proteins remains unresolved. Importantly, the role of 103 

KSHV gH in viral maturation, assembly, egress, or infection remains undetermined. In addition, although 104 

several KSHV glycoprotein–host-cell receptor interactions have been described, it is not clear which viral 105 

envelope glycoproteins are essential for infection of most highly permissive cell types (31, 32, 43). 106 

Identification of the critical KSHV glycoproteins required for infection of permissive cells in vivo will provide 107 

information to guide prophylactic vaccine development.  108 

As for all other herpesviruses, significant progress in studying KSHV gene functions has been made by 109 

deriving mutant viruses that harbor deletions, truncations, or insertions of stop codons within the gene of 110 

interest to abrogate protein expression via a bacterial artificial chromosome (BAC) system (44-51). Once the 111 

recombinant virus is constructed, the impact of the introduced mutations on the phenotypic properties of the 112 

virus can be determined using in vitro or in vivo systems. To date, only two KSHV deletion mutants (K8.1-null 113 

and gB-null) have been generated and partially characterized to understand the roles of envelope glycoproteins 114 

in entry mechanisms (44, 45). In this study, we generated and characterized a mutant KSHV virus in which 115 

expression of the gH protein was abrogated by insertion of stop codons into the gH coding region using En 116 

Passant mutagenesis, a two-step lambda Red DNA recombination system (52). To better define the role of gH 117 

in the KSHV life cycle, we assessed the ability of the gH-null mutant to replicate, produce virions, and infect 118 

diverse mammalian cell types in vitro. Using recombinant KSHV lacking gH protein, we provide evidence that 119 

KSHV gH is not required for virion maturation, assembly, or egress. Importantly, we show that gH is 120 
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indispensable for infection of epithelial, endothelial, or fibroblast cells of human origin in vitro, suggesting that 121 

KSHV gH is a key target for the development of a prophylactic vaccine to prevent KSHV entry and infection. 122 

123 
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RESULTS 124 

Mutagenesis, integrity analysis of genomic clones, and establishment of stable inducible cell lines. To 125 

determine the role of KSHV gH in cell entry, replication, and virus egress, we generated ORF22 (gH)-null 126 

recombinant KSHV tagged with enhanced green fluorescent protein (rKSHV∆gH-eGFP) and its revertant 127 

(rKSHVgH-eGFP Rev) based on wild-type eGFP-tagged recombinant KSHV (rKSHV WT-eGFP) within the E. 128 

coli strain GS1783. A sequence of three stop codons, TAGTTAGATAGT (a three-stop element that ensures 129 

protein translation machinery encounters a stop signal in all possible three reading frames), was inserted (∆gH) 130 

or removed again after insertion (gH Rev) into the gH coding sequence of the rKSHV WT-eGFP genome using 131 

the two-step En passant markerless Red recombination system as described (15, 52). Because the gH gene 132 

overlaps with flanking sequences ORF21 and ORF23, the three-stop element was inserted downstream of the 133 

gH start codon at amino acid (aa) position 78 to avoid interference with the expression of the upstream ORF21 134 

gene (FIG. 1A). During En passant mutagenesis, we confirmed insertion (step 1) and deletion (step 2) of a 135 

kanamycin resistance (Kan
R
) gene cassette within the rKSHV WT-eGFP genome using PCR with flanking 136 

primers (ORF22-F and ORF22-R, listed in Table 1) (FIG. 1B) and restriction fragment length polymorphism 137 

analysis with HindIII restriction enzyme (FIG. 1C). We confirmed the sequence integrity of the mutation site in 138 

rKSHV∆gH-eGFP and rKSHVgH-eGFP Rev using Sanger sequencing (FIG. 1D). The complete genome 139 

sequence of rKSHV∆gH-eGFP following the mutagenesis procedure was identical to its parental rKSHV WT-140 

eGFP clone, as confirmed using both Illumina Miseq and PacBio genome sequencing.  141 

To obtain efficient and stable producer cell lines for rKSHV∆gH-eGFP or rKSHVgH-eGFP Rev, we 142 

used inducible SLK (iSLK) cells, a KSHV cell line containing a stable doxycycline (Dox)-inducible cassette of 143 

ORF50 (RTA) (15), a KSHV immediate-early gene that is necessary and sufficient for activating KSHV lytic 144 

replication. We transfected, selected, and characterized iSLK cells as described (15). Briefly, we transfected 145 

genomic DNAs of rKSHV∆gH-eGFP or rKSHVgH-eGFP Rev into iSLK cells, then selected transfected cells 146 

for hygromycin resistance (a gene located within the rKSHV-eGFP genome) until cells in the culture were all 147 
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stably eGFP-positive (FIG. 2A). Upon successful establishment of latency, we expanded the parental iSLK 148 

rKSHV WT-eGFP and stable iSLK rKSHV∆gH-eGFP and iSLK rKSHVgH-eGFP Rev cell lines, then treated 149 

them with Dox and sodium butyrate (NaB) to induce RTA expression. This led to the initiation of lytic gene 150 

expression and subsequent production of rKSHV WT-eGFP, rKSHV∆gH-eGFP, or rKSHVgH-eGFP Rev 151 

progeny virions, which we purified from the cell culture supernatants as described (15). We quantified the 152 

purified virions using qPCR and observed that induction of iSLK cells harboring the KSHV gH-null mutant or 153 

its revertant consistently released equal titers of virions compared to rKSHV WT-eGFP (FIG. 2B). We further 154 

confirmed the abrogation of gH expression in purified rKSHV∆gH-eGFP virions using immunoblot with an 155 

anti-gH monoclonal antibody (mAb) (clone 54A1, unpublished antibody generated in our laboratory) (FIG. 2C, 156 

top panel). In our hands, we found that gH expression is typically low in the KSHV-infected cells; thus, to 157 

detect gH protein in immunoblots, we used highly purified and concentrated samples of iSLK rKSHV WT-158 

eGFP, rKSHV∆gH-eGFP, and rKSHVgH-eGFP Rev virions. We did not detect gH protein in lysates from 159 

purified rKSHV∆gH-eGFP virions, but did detect it in all three positive controls, i.e., lysates from purified 160 

rKSHV WT-eGFP and rKSHVgH-eGFP Rev virions and purified soluble gH/gL protein complex. As expected, 161 

we did not detect gH protein expression in lysates made from iSLK cells (negative control). To confirm that all 162 

three recombinant viruses were undergoing normal latent and lytic cycles, we demonstrated the presence of 163 

ORF73 (LANA1; a latent KSHV protein) and K8.1 (a lytic KSHV protein) in lysates from all recombinant cell 164 

types, but not iSLK negative control cells (FIG. 2C, middle and bottom panel).  165 

 166 

gH is dispensable for production and egress of KSHV virions. To assess whether KSHV gH is critical for 167 

production or egress of virions from stable iSLK rKSHV∆gH-eGFP cells, we seeded equal amounts of iSLK 168 

rKSHV WT-eGFP, iSLK rKSHV∆gH-eGFP, or iSLK rKSHVgH-eGFP Rev cells and induced them with Dox 169 

and NaB for 48 h. To assess virion production, we washed and fixed the induced cells, prepared thin sections, 170 

and observed them using transmission electron microscopy (TEM), confirming that virions produced from 171 
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rKSHV WT-eGFP, rKSHV∆gH-eGFP, and rKSHVgH-eGFP Rev viruses were assembled within iSLK cells 172 

(FIG. 3, top panel). To assess egress, we filtered and concentrated the supernatant from the induced cells, then 173 

performed negative stain TEM, which confirmed that virions produced from all viruses were released into the 174 

supernatant (FIG. 3, bottom panel). These results indicate that KSHV gH is not required for maturation, 175 

assembly, or egress of the virus from iSLK cells. 176 

 177 

KSHV gH is indispensable for cell-free viral infection of diverse highly permissive cell lines and primary 178 

fibroblasts. We used purified rKSHV WT-eGFP, rKSHV∆gH-eGFP, or rKSHVgH-eGFP Rev virions to 179 

determine infectivity and in vitro host range in various cell types. To assess infectivity in iSLK cells, we 180 

incubated cells with purified rKSHV WT-eGFP, rKSHV∆gH-eGFP, or rKSHVgH-eGFP Rev virions. Unlike 181 

iSLK cells incubated with rKSHV WT-eGFP or rKSHVgH-eGFP Rev, iSLK cells incubated with rKSHV∆gH-182 

eGFP were not permissive to infection, even in the presence of infection enhancers such polybrene and/or 183 

spinoculation (FIG. 4). 184 

To assess infectivity in other cell types permissive to KSHV infection (24, 53), we incubated iSLK cells 185 

(a mixture of endothelial and epithelial cells), human epithelial cell lines (HEK-293 and HeLa), human 186 

endothelial cells (HUVEC), and human fibroblasts (HFF-1 cell line and primary tonsil fibroblasts) with purified 187 

rKSHV WT-eGFP, rKSHV∆gH-eGFP, or rKSHVgH-eGFP Rev virions. As expected, rKSHV WT-eGFP and 188 

rKSHVgH-eGFP Rev infected all cell types tested, as determined using both flow cytometry and microscopy 189 

for eGFP expression (FIG. 5A). We obtained similar results in primary tonsil fibroblasts from four independent 190 

donors (FIG. 5B). In contrast, no infection was observed when any of these cell types were incubated with 191 

purified rKSHV∆gH-eGFP, indicating that gH protein is required for infectivity of these highly permissive cell 192 

types tested (FIG. 5A–B). 193 

B cells typically exhibit poor permissiveness to KSHV infection in vitro, which is thought to be due to 194 

lack of appropriate receptors (54). Remarkably, when we infected a B cell line (MC116) with the purified 195 
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virions, then used flow cytometry to quantitate infection, we observed that rKSHV WT-eGFP, rKSHV∆gH-196 

eGFP, and rKSHVgH-eGFP Rev infected the cells (FIG. 5C), albeit to a limited extent. This suggests that gH is 197 

not required for infection of this cell line or that KSHV can bypass the canonical receptors to cause infection of 198 

MC116 cells. We used fluorescent microscopy to further confirm the infectivity of rKSHV WT-eGFP, 199 

rKSHV∆gH-eGFP, and rKSHVgH-eGFP Rev for MC116 cells (FIG. 5D). Quantification of eGFP-positive 200 

infected cells confirmed that infectivity of rKSHV∆gH-eGFP was comparable to that of rKSHV WT-eGFP and 201 

rKSHVgH-eGFP Rev (FIG. 5E, top panel). Furthermore, when we used fluorescence-activated cell sorting 202 

(FACS) to enrich for eGFP-positive cells, the resulting cells were able to multiply and spontaneously go lytic, 203 

as evidenced by detection of the lytic protein, K8.1, by immunoblot (FIG. 5E, bottom panel). This suggests that 204 

most MC116 infected cells are lytic in nature. We also detected expression of both LANA1 and K8.1 using real-205 

time quantitative PCR (RT-qPCR), which was comparable between rKSHV WT-eGFP- and rKSHV∆gH-eGFP-206 

infected cells (FIG. 5F).  207 

To confirm that most of the human cell lines tested expressed the canonical cellular receptors that have 208 

been implicated in supporting KSHV infection through gH/gL interactions, we analyzed expression of EphA2 209 

and EphA4 using immunoblot, and expression of EphA7 using flow cytometry, due to lack of an antibody that 210 

works for immunoblot. All of the cell types tested by immunoblotting expressed both EphA2 and EphA4 211 

proteins, with the exception of MC116 cells, which only expressed EphA4 (FIG. 5G). This may explain the 212 

limited permissiveness of MC116 cells to KSHV infection, as both EphA2 and EphA4 were recently shown to 213 

synergistically support infection (32, 33). However, we detected expression of EphA7, which was recently 214 

implicated in cell-cell transmission of KSHV infection, in MC116 cells but not in iSLK or HEK-293 cells (FIG. 215 

5H). The role of EphA7 expression in permissiveness of MC116 cells to KSHV infection remains to be 216 

investigated. 217 

To confirm our infectivity data, we used non-human cell lines. We found that as for human cells, only 218 

rKSHV WT-eGFP or rKSHVgH-eGFP Rev virions were infectious to epithelial (CHO-K1 and Vero) and 219 
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fibroblast (NIH 3T3 and BHK-21) cell lines (FIG. 6), whereas rKSHV∆gH-eGFP did not infect any of the non-220 

human cell lines tested. Taken together, these results indicate that gH is required for KSHV infection of diverse 221 

non-B cell types. 222 

 223 

gH is dispensable for KSHV binding to target cells. To measure the extent to which rKSHV∆gH-eGFP can 224 

bind to non-permissive cell lines, we performed viral binding/attachment assays. We incubated cells (HeLa, 225 

HUVEC, HFF-1, and MC116) with rKSHV WT-eGFP or rKSHV∆gH-eGFP at the indicated input 226 

concentrations (Log1–Log4 viral copies per cell, as quantified by qPCR), then washed them to remove unbound 227 

virus. We used qPCR to quantify total DNA isolated from cell-bound KSHV, viral genome copy number (using 228 

KSHV K8.1 gene), and the total number of cells (using GAPDH housekeeping gene), then plotted the ratio of 229 

viral DNA attached per cell against input viral genome copies per cell. We observed comparable target-cell 230 

attachment between rKSHV WT-eGFP and rKSHV∆gH-eGFP over a range of 4 log concentrations of input 231 

viral genome per cell in all cell types tested (FIG. 7). Comparable binding to epithelial cells, endothelial cells, 232 

fibroblast cells, and B cells indicates that the mutant virus retains its ability to bind multiple cell types, possibly 233 

using a non-gH/gL glycoprotein such as ORF4, K8.1, or gB. This suggests that although infection is abrogated 234 

by the absence of gH in epithelial, endothelial, and fibroblast cell types, the physical binding of rKSHV∆gH-235 

eGFP to the cell surface is not affected in any cell types by the absence of gH.  236 

 237 

Nucleotide sequence accession number. We deposited the full genome sequence of the rKSHV∆gH-eGFP 238 

construct (including BAC16, but excluding the inserted three-stop element) in GenBank under accession 239 

number MK208323. 240 

 241 

 242 

 243 
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 244 

DISCUSSION 245 

KSHV is marked by a broad viral tropism for diverse host cell types, including epithelial and endothelial 246 

cells, fibroblasts, monocytes, and B cells [see reviews (12, 13)]. Like most herpesviruses, KSHV is shed in the 247 

saliva, suggesting it is principally transmitted via the oral epithelium (55-59). The virus then spreads to establish 248 

latency in other permissive cell types and remains in the host for life. However, a complete understanding of the 249 

KSHV life cycle remains elusive, and the KSHV glycoproteins mediating entry into and infection of diverse 250 

cell types remains unresolved. An improved understanding of these mechanisms is required to develop effective 251 

strategies for preventing KSHV infection and subsequent malignancies. 252 

To gain an improved understanding of KSHV entry and infection mechanisms, we generated a stable 253 

iSLK rKSHV∆gH-eGFP producer cell line that enabled us to fully characterize the phenotype of rKSHV 254 

lacking gH expression. Upon lytic induction of iSLK rKSHV∆gH-eGFP cells, normal mature virus particles 255 

assembled and were released, indicating that gH is not required for KSHV maturation, assembly, or egress. 256 

Although our results contradict a recent observation that deletion of gH is deleterious to viral replication (60), 257 

we are confident in the results of our transmission electron microscopy studies, which showed that, as for most 258 

other herpesviruses, deletion of KSHV gH does not interfere with viral replication, maturation, or egress. 259 

Similar to an EBV gH-null mutant virus (39), we showed that rKSHV lacking gH expressed both latent 260 

(LANA1) and lytic (K8.1) genes, indicating that the viral replication cycle is not impaired. We further used the 261 

purified, functional, cell-free viral particles to define the role of gH in de novo infection and determine KSHV 262 

host range in vitro. Our results show that KSHV gH is indispensable for infection of human and non-human 263 

epithelial cells, endothelial cells, and fibroblasts; however, because we observed low efficiency of infection to 264 

the MC116 B cell line, we consider its role in human B cell infection to remain inconclusive. This is further 265 

confirmation that deletion of KSHV gH is not deleterious to viral replication.   266 
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In the past two decades, multiple host cell receptors in diverse permissive cell types have been identified 267 

as mediators of KSHV infection that interact with various KSHV glycoproteins such as K8.1, gB, and the 268 

gH/gL complex. These include integrins, heparan sulfate, cystine/glutamate transporter, DC-SIGN, and EphA2, 269 

A4, and A7 (26, 32, 61-65). Targeting host cell receptors offers one way to prevent KSHV infection. However, 270 

redundant functions among the receptors involved may hinder this approach. For example, although integrins 271 

such as 31, V3 or V5 are presumed to play a crucial role in KSHV infection (13), they were recently 272 

proven to be dispensable for epithelial cell infection (61), suggesting that they may not be ideal targets in a 273 

clinical setting. Similarly, a recent study identified conserved residues in the N-terminal domain of gH that 274 

mediate EphA2 binding (66). Mutation of the residues reduced infection efficiency in iSLK cells, but did not 275 

completely block KSHV infection, prompting the authors to conclude that gH binding to EphA2 is important 276 

but not essential for viral infection, suggesting that either multiple sites on gH interact with EphA2 or other host 277 

receptors are likely involved in the infection. Indeed, in another study, single or combined knockout of EphA2 278 

and EphA4 in HEK-293 cells dramatically decreased KSHV infection, but did not achieve complete blockage of 279 

infection (33), as we achieved in our current experiments in which lack of gH expression completely blocked 280 

KSHV infection of diverse cell types. Additional evidence shows that targeting individual host cell receptors is 281 

not an effective mechanism for blocking KSHV infection, as neither knocking out cellular receptors (61, 67) nor 282 

using inhibitors to target cellular receptors, including peptides, small molecules, or soluble receptors, has 283 

completely inhibited KSHV infection in diverse permissive cell types [reviewed in (12)]. Furthermore, potential 284 

challenges in targeting host cell receptors clinically to prevent KSHV infection include: (1) the high quantities 285 

of blocking reagents required for systemic distribution may prove toxic; (2) the expression levels of host cell 286 

receptors may be transient and/or depend upon the cell state (e.g., activated vs. inactivated B cells show 287 

differential DC-SIGN expression); (3) the necessity of using multiple blocking reagents to target the multiple 288 

types of receptors expressed on permissive host cells; and (4) the potential for different receptors to bind to 289 

different sites of the same KSHV glycoprotein(s) mediating infection. 290 
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To counter the challenges inherent in targeting host cell receptors to prevent KSHV infection, we 291 

suggest that targeting multiple viral glycoproteins involved in viral entry may be more effective. Our study 292 

provides strong evidence that expression of KSHV gH is absolutely required for infection of epithelial cells, 293 

endothelial cells, and fibroblasts. Although KSHV lacking gH was capable of binding to these cell types, it did 294 

not infect them, even at high viral DNA copy number. Coupled with published data on EphA2/A4 knockout, 295 

this suggests that the gH/gL complex interacts with more than two host cell receptors engaged in viral infection 296 

in epithelial, endothelial, and fibroblast cells (35). Recent isolation of broadly neutralizing mAbs against other 297 

herpesviruses such as EBV gH/gL (AMMO1) (68), or human cytomegalovirus gH/gL pentameric complex (69), 298 

suggests that such antibodies may exist for KSHV and that KSHV gH/gL may be useful targets for developing 299 

prophylactic vaccines to elicit broadly neutralizing antibodies to prevent infection in epithelial, endothelial, and 300 

fibroblast cells. 301 

Despite remarkable progress made in elucidating general γ-herpesvirus entry mechanisms into highly 302 

permissive cell types, how KSHV enters B cells both in vitro and in vivo remains unresolved. In striking 303 

contrast to the abrogated infection we observed in epithelial cells, endothelial cells, and fibroblasts, and to its 304 

closest related human γ-herpesvirus, EBV (39), our gH-null KSHV mutant infected a well-characterized 305 

permissive B cell line (MC116) in vitro to a limited extent. This infection was characterized by lytic induction, 306 

as evidenced by readily detectable K8.1 protein without artificial induction of lytic replication using chemical 307 

reagents. Given our preliminary observations that gH-null virus was infectious to B cells, we speculate that 308 

KSHV entry into B cells likely occurs through another envelope glycoprotein, K8.1, and its binding to a yet-to-309 

be determined receptor, as was recently reported (54). The importance of K8.1 for B cell infection was recently 310 

demonstrated by Dollery at el; their group showed that blocking K8.1 with mAbs or a K8.1-null mutant 311 

rKSHV∆K8.1 (45, 70) significantly reduced KSHV infection of a B cell line (MC116) and tonsillar primary B 312 

cells, but not epithelial or endothelial cell lines. However, whether this infection occurs in the absence of gH 313 

remains to be investigated. It is also possible that KSHV enters and infects B cells through a direct interaction 314 
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between gB and DC-SIGN or EphA4 (30), or a yet-to-be identified receptor, bypassing gH and K8.1 altogether. 315 

However, elucidating the role of KSHV gB in infection is not straightforward. Using a BAC system, a previous 316 

study demonstrated that KSHV gB-null mutant virus can replicate, but that its virions neither mature nor egress 317 

outside of host cells to release infectious particles, making it difficult to test the ability of rKSHV lacking gB 318 

protein to infect cells (44). Thus, future studies could explore the use of a protease-sensitive gB mutant or gB-319 

neutralizing antibodies as an alternative strategy to elucidate the role(s) of gB in viral entry and identify its 320 

receptor in B cells. However, to our knowledge, there are currently no such reagents available to fully 321 

characterize the phenotype of a KSHV gB-null mutant virus. Regarding B cell entry via gH/gL, our findings 322 

and current cumulative evidence suggest that the gH/gL–EphA2 interaction does not play any role in the 323 

infection of B cells, given that EphA2 is not expressed on most B cells (26, 66, 71). However, our results 324 

showed for the first time that MC116 cells express both EphA4 and EphA7, both of which have been implicated 325 

in KSHV infection, either through cell-free viral infection or cell-to-cell transmission (33, 34). These receptors 326 

may provide a mechanism for KSHV entry and infection of B cells or other cell types; however, their roles 327 

remain to be elucidated.  328 

In summary, this work highlights the utility of the BAC system and Red recombination technique in 329 

dissecting the functional role of KSHV gH protein in viral replication and de novo infection of a variety of 330 

target cells. We provide evidence that KSHV gH is not required for viral maturation, virion assembly, or egress, 331 

and that it is indispensable for infection of epithelial cells, endothelial cells, and fibroblast cells. Thus, we 332 

suggest that gH is a key target for the development of prophylactic vaccines to prevent initial KSHV infection. 333 

However, the role of gH in B cell infection remains inconclusive, and we will continue to investigate this role in 334 

our laboratory in a humanized BLT (bone marrow, liver, and thymus) mouse model generated from 335 

NOD/SCID/IL2rγ mice, which have been shown to be susceptible to KSHV infection and to develop KSHV-336 

positive B cell lymphoma (72). We expect results from the present and future studies to fully inform 337 
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development of an effective subunit vaccine or a promising antiviral target against KSHV infection and its 338 

associated malignancies. 339 

 340 

MATERIALS AND METHODS 341 

Viruses and cells. We received 1) the iSLK cell line containing stable Dox-inducible RTA, and 2) iSLK cells 342 

harboring recombinant WT KSHV (rKSHV WT-eGFP; GenBank accession number GQ994935.1) as kind gifts 343 

from Dr. Jung, University of Southern California, CA. rKSHV WT-eGFP contains the viral clone JSC-1 344 

previously isolated from primary effusion lymphoma cells in a BAC 16 backbone incorporating eGFP and 345 

hygromycin resistance as selection markers in its genome (15). Human embryonic kidney epithelial cells (HEK-346 

293), human cervical epithelial cells (HeLa), human umbilical vein endothelial cells (HUVEC), human foreskin 347 

fibroblasts (HFF-1), human EBV- and KSHV-negative lymphoblastoid B cell line (MC116), Chinese hamster 348 

ovary epithelial-like cells (CHO-K1), African green monkey endothelial cells (Vero), mouse fibroblast cells 349 

(NIH/3T3), and Syrian golden baby hamster kidney fibroblasts (BHK-21) were obtained from American Type 350 

Culture Collection (ATCC, Manassas, VA). These cells were maintained as recommended by ATCC either in 351 

Dulbecco’s modified Eagle’s medium (DMEM) or Roswell Park Memorial Institute (RPMI) 1640 media with 2 352 

mM L-glutamine, 10% fetal bovine serum (FBS), and 1% penicillin/streptomycin antibiotics. HUVEC were 353 

maintained in VascuLife Basal Medium with VascuLife EnGS LifeFactors (Lifeline Cell Technology, 354 

Frederick, MD). iSLK cells were cultured with 2 mM L-glutamine, 10% FBS, and 1% penicillin/streptomycin 355 

antibiotics in DMEM medium supplemented with 1 µg/ml puromycin and 250 µg/ml G418. All cell lines were 356 

cultured at 37°C in a humidified, 5% CO2 incubator. 357 

De-identified primary human tonsil fibroblasts were obtained after routine tonsillectomy from discarded, 358 

de-identified tissues, with approval from the Institutional Review Board of Chapman University. Non-359 

lymphocyte tonsil lineages were isolated via homogenization of residual tonsil tissue after lymphocyte 360 

extraction by incubating the tissue with 1120 units Liberase DH (5401054001; Roche, Indianapolis, IN) and 361 
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200 µg DNaseI (DN25; Sigma Aldrich, St. Louis, MO) in serum-free DMEM for 2 x 15 min at 37˚C, with 362 

homogenization between and after incubations using a Miltenyi gentleMACS instrument (Miltenyi Biotec, San 363 

Diego, CA). The resulting single-cell suspensions were cultured as mixed lineage, high-density cultures in 364 

endothelial cell media containing 100 µg/ml antimicrobial Primocin (InvivoGen, San Diego, CA) for 7-10 days 365 

to facilitate adaptation to 2-dimensional cell culture. Fibroblasts were then isolated from adapted cultures using 366 

positive selection via magnetic microbeads (CD90 microbeads 130-096-253; Miltenyi). After isolation, primary 367 

CD90+ fibroblasts were maintained in DMEM containing 10% FBS and Primocin, and were used for 368 

experiments between passage 3 and 10. 369 

 370 

Plasmids and mutagenesis of KSHV WT-eGFP genome. To generate plasmid for qPCR standardization, full-371 

length WT K8.1 was individually cloned into the pCAGGS mammalian expression vector as described (73). To 372 

construct gH/gL Fc-6xHis-tagged plasmids for protein production, a single transcript expressing WT gL (gL-373 

WT; aa 1-139) and the gH ectodomain (aa 1-702) was synthesized by Genewiz (South Plainfield, NJ). The 374 

upstream (5’) and downstream (3’) sequences contained NotI and SpeI enzyme restriction sites, respectively 375 

(74), which were used to subclone the synthesized product into the Cntn1-Fc-His vector, a gift from Dr. 376 

Wojtowicz, Stanford University, CA (Addgene plasmid #72065). To express gH/gL complex in its native form, 377 

a unique 2A linker sequence (18 aa) (75) was interspersed between the cDNAs encoding for the two proteins. 378 

This resulted in a polycistronic vector with a cleavage site that allows gL-WT and the gH ectodomain to be 379 

processed independently after transcription, and released to natively form a complex that is released into the 380 

supernatant. Sanger sequencing was used to verify the fidelity of the whole vector and the construct. 381 

pEPkan-S plasmid was used as a source of the Kan
R
 gene cassette required for En Passant mutagenesis 382 

(12). rKSHV WT-eGFP within the E. coli strain GS1783 was a kind gift of Dr. Jung (15). rKSHV WT-eGFP 383 

was used as a vector in which three stop codons (TAGTTAGATAGT) were introduced within ORF22 (gH) at 384 

nucleotide position 37,165 using En Passant mutagenesis, a two-step, markerless Red recombination technique, 385 
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as described (15, 52). This resulted in a truncated sequence devoid of gH protein expression. The cloning 386 

mutagenesis strategy and the primers used for insertion (to make rKSHV∆gH-eGFP) and removal (to make 387 

rKSHVgH-eGFP Rev) of the three-stop element are illustrated in FIG. 1A and Table 1. Recombinant clones 388 

with insertion or deletion of the Kan
R
 cassette in the rKSHV WT-eGFP genome following the two-step Red 389 

recombination technique were digested with HindIII, and the site of mutation was PCR-amplified using primers 390 

flanking the region and analyzed by agarose-gel electrophoresis. The mutated sites of each rKSHV WT-eGFP 391 

clone and the integrity of the whole genome were confirmed using Sanger sequencing and next-generation 392 

sequencing, respectively. 393 

 394 

Whole genome sequencing and sequence analysis. Genome sequencing of the purified rKSHV∆gH-eGFP 395 

DNA from GS1783 bacteria was performed using standard protocols, as described (15). To confirm the 396 

integrity of the genome, approximately 2 µg of rKSHV∆gH-eGFP genomic DNA was fragmented using the 397 

Covaris S220 Ultrasonicator System (Matthew, NC), and sheared DNA size was assessed using the Agilent 398 

2011 bioanalyzer (Santa Clara, CA). A SMRTbell library was constructed following the PacBio standard 20-kb 399 

template preparation protocol using the SMRTbell Template Prep Kit 1.0 from Pacific Biosciences (Menlo 400 

Park, CA). Briefly, the DNA was incubated with exonuclease VII at 37C for 15 min to remove single-stranded 401 

DNA, and any possible DNA damage was repaired using a DNA damage repair mix at 37C for 20 min. Blunt-402 

ended DNAs were treated with end-repair mix at 25C for 5 min and ligated with 1 µM of annealed blunt 403 

adapters using 0.75 U/µl ligase at 25C overnight, then the ligase was inactivated by incubation at 65C for 10 404 

min. To remove failed ligation products, samples were treated with exonuclease III and VII at 37C for 1 h. To 405 

purify the DNAs and ligated products, 0.45X of AMPure PB Beads from Pacific Biosciences were applied. The 406 

final magbead complexes were loaded into a PacBio RSII machine for SMRT sequencing, with one SMRT cell 407 

allocated to the complex for 6 h running time.  408 
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 Primary whole genome sequencing analysis, including real-time imaging, base calling, and assessing 409 

quality was performed by the PacBio RS Blade Center through RS Touch and RS Remote, and the results were 410 

sent directly to secondary analysis for extracting the filtered subreads with SMRT Pipe (v.1.87.139483) via 411 

SMRT Portal (v.2.3.0). The filtered 445,558 subreads were used as the input for the Canu sequence assembler 412 

(v.1.7.1) (76) for de novo assembly, and the assembled sequence from Canu was corrected using LoRDEC 413 

(v.0.9) (77), based on Illumina short reads obtained from the same DNA sample generated using an Illumina 414 

MiSeq.  415 

 416 

Production and quantification of recombinant KSHV progeny. Purified rKSHV∆gH-eGFP and rKSHVgH-417 

eGFP Rev DNAs were introduced into iSLK cells using FuGENE
®

 HD transfection reagent (Promega, 418 

Madison, WI) (12). Transfected cells were selected in media containing hygromycin at a final concentration of 419 

1 mg/ml, which was also used to maintain stable iSLK cell lines harboring latent KSHV. To produce the 420 

progeny virus, these stable cell lines were expanded into 100 T-175 flasks, induced by addition of 2 µg/ml Dox 421 

and 1.5 mM of NaB to the culture media, and incubated for 24 h, after which the induction media was removed 422 

and cells were cultured in complete DMEM for four days as described (15). Progeny virus particles in the 423 

harvested cell culture supernatant were clarified twice by centrifugation at 2,000 ×g for 15 min, followed by 424 

filtration through a 0.8 µm membrane to remove cellular debris. Virions were pelleted by ultra-centrifugation 425 

(10,000 ×g for 90 min at 4°C) through a 5% Optiprep (Sigma Aldrich) gradient, and resuspended in 1x 426 

phosphate buffered saline (PBS) or media without FBS for subsequent experiments.  427 

Viral titers were measured in iSLK Infectious Units (iSLU), assessed using either flow cytometry with 428 

eGFP expression as a marker for virus-positive cells, or quantitative PCR (qPCR) of genomic DNA copy 429 

number in virus stock. Briefly, for eGFP, serial dilutions of the viral preparations were used to infect iSLK 430 

cells; 24 h post-infection, the number of live cells expressing eGFP was determined using a fixable viability dye 431 

eFluor 506 and C-6 flow cytometer (BD Biosciences, San Jose, CA) and data was analyzed using FlowJo 432 
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Cytometry Analysis software (FlowJo, LLC, Ashland, OR). For qPCR, DNA was extracted from the virus stock 433 

(pre-treated with DNase) using a QIAamp Mini Elute Virus Spin Kit (Qiagen, Valencia, CA). Viral genomes 434 

were quantified using PowerUp SYBR green PCR master mix or Taqman Fast Advanced Master Mix (Applied 435 

Biosystems, Foster City, CA) utilizing the primer pair ORF11/K8.1 or Taqman primers and probes targeting the 436 

BAC16 eGFP cassette. Samples were analyzed in triplicate. An eight-series of 10-fold dilutions of plasmid 437 

pCAGGS-K8.1 (73) or pCR2.1-GFP was used as a standard for absolute quantification of viral genome copies. 438 

The sequences of reverse transcriptase qPCR primer sets for amplification of viral ORF targets are provided in 439 

Table 1.  440 

 441 

Transmission electron microscopy. Cells were trypsinized, washed with 1x PBS, and pelleted before fixing 442 

with 2% glutaraldehyde in 0.1 M Cacodylate buffer (Na(CH3)2AsO2·3H2O), pH 7.2, at 4°C, overnight. Fixed 443 

cell pellets were washed three times with 0.1 M Cacodylate buffer, pH 7.2, post-fixed with 1% OsO4 in 0.1 M 444 

Cacodylate buffer for 30 min, and washed three times with 0.1 M Cacodylate buffer. The samples were then 445 

dehydrated through 60%, 70%, 80%, and 95% ethanol, 100% absolute ethanol (twice), and propylene oxide 446 

(twice), and were left in propylene oxide/Eponate (1:1) overnight at room temperature (RT) in sealed vials. The 447 

next day, the vials were left open for 2–3 h to evaporate the propylene oxide. The samples were infiltrated with 448 

100% Eponate and polymerized at 64°C for 48 h. Ultra-thin sections (~70 nm thick) were cut using a Leica 449 

Ultracut UCT ultramicrotome (Wetzlar, Germany) with a diamond knife and picked up on 200-mesh copper 450 

TEM grids. Grids were stained with 2% uranyl acetate for 10 min, followed by Reynold’s lead citrate staining 451 

for 1 min. To perform negative stain TEM of extracellular progeny virus particles, the harvested supernatant 452 

was clarified by centrifugation at 2,000 ×g for 15 min, followed by filtration through 0.8 µm membrane to 453 

remove cellular debris. Purified virions were pelleted using ultra-centrifugation through a 5% Optiprep gradient 454 

at 10,000 ×g, 70 min, 4°C, then fixed in 2% glutaraldehyde and processed for TEM. Briefly, individual purified 455 

virions were resuspended in 1x PBS and solution was adsorbed to glow-discharged, carbon-coated 300 mesh 456 
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TEM grids. Samples were prepared using conventional negative staining with 1% (w/v) uranyl acetate. TEM 457 

images for both cells and purified virions were collected with an FEI Tecnai 12 transmission electron 458 

microscope (Thermo Fisher Scientific) equipped with a LaB6 filament and operated at an acceleration voltage 459 

of 120 kV. Images were recorded with a Gatan 2×2 k CCD camera (Gatan, Inc., Pleasanton, CA) at a 460 

magnification of 30,000X and a defocus value of ~1.5 μm. 461 

 462 

Immunoblot. Cells were washed three times with 1x PBS, lysed with radio immunoprecipitation assay (RIPA) 463 

buffer, and centrifuged at 20,000 ×g for 10 min at 4°C. Total protein was quantified using Bradford protein 464 

assay (Thermo Fisher Scientific). Cleared total cellular lysate was mixed with reducing SDS loading buffer (125 465 

mM Tris-HCl, 2% sodium dodecyl sulfate, 0.1% bromophenol blue, 1% 2-mercaptoethanol) at a ratio of 1:4, 466 

denatured at 100°C for 5 min, and separated using SDS-PAGE (NuPAGE™ 4-12% Bis-Tris Protein gel, 467 

Thermo Fisher Scientific). Separated proteins were transferred onto 0.45-μm nitrocellulose membranes 468 

(Protran; PerkinElmer Life Sciences, Waltham, MA). Membranes were then blocked with 3% BSA in 0.1% 469 

Tween 20 1x PBS for 1 h and probed with an appropriate primary antibody (in-house anti-gH mouse mAb, 470 

mab-54A1; anti-HHV-8 K8.1 A/B 4A4 mouse mAb [Santa Cruz Biotechnology, Dallas, TX]; anti-HHV-8 471 

LNA-1 Clone LN53 rat mAb [Millipore, Burlington, MA]; anti-EphA2 (C-3; sc-398832) mouse mAb [Santa 472 

Cruz Biotechnology]; EphA4 (D4; sc-365503) mouse mAb [Santa Cruz Biotechnology]; or anti-β-actin (C-3; 473 

sc-47778) [Santa Cruz Biotechnology]) in blocking solution overnight at 4°C. The next day, membranes were 474 

washed three times (1x PBS and 0.1% Tween 20) and incubated with the corresponding horseradish peroxidase 475 

(HRP)-conjugated secondary antibodies (goat anti-mouse or goat anti-rat serum [Santa Cruz Biotechnology] at 476 

a dilution of 1:2,000) for 1 h at RT. After a subsequent wash, signal was developed using standard Amersham 477 

ECL Prime Western Blotting Detection reagent (GE Healthcare Life Sciences, Marlborough, MA) and the 478 

images were captured using an iBright Imaging System (Thermo Fisher Scientific). 479 

 480 
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In vitro infection assay. 5x10
4
 cells/well (iSLK, HEK-293, HeLa, HUVEC, HFF-1, MC116, CHO-K1, Vero, 481 

NIH3T3, BHK-21, or primary human fibroblasts) were seeded (5x10
4
/well) in 48-well plates in triplicate. The 482 

following day, cells were incubated with varying quantities (10
2 
to 10

4
 viral copies per cell) of purified rKSHV 483 

WT-eGFP (positive control), rKSHV∆gH-eGFP, or rKSHVgH-eGFP Rev in 1 ml of Opti-MEM media. Cells 484 

incubated in media without any virus were used as negative controls. The virus–cell mixtures were incubated at 485 

37°C in 5% CO2 for 2 h, then cells were washed three times with 1x PBS to remove unbound virus. Infected 486 

cells were incubated with complete media for 48 h and quantified by counting eGFP expression using flow 487 

cytometry. In certain cases, 8 µg/ml of polybrene was added to the infection media and/or spinoculation was 488 

performed by centrifugation at 1,500 ×g, for 1 h at RT, to enhance iSLK, primary fibroblast and B cell 489 

infections. All infection experiments were replicated at least three times and repeated twice. 490 

 491 

Gene expression analysis in B cells. Cultured B cells (MC116) were infected and cultured as described above. 492 

Mock viral infection was performed using purified rKSHV WT-eGFP inactivated in 2% buffered formaldehyde 493 

in PBS for 60 min at 37°C. Infected cells were FACS-sorted (BD FACSAria III) and enriched for eGFP 494 

expression. Sorted cells were grown for 4 days, then harvested, pelleted, and lysed in 300 l TRIzol reagent and 495 

stored at -80°C until analysis. After thawing, 300 l of DNA/RNAShield reagent (Zymo Research R1100-50) 496 

were added to the TRIzol and RNA was isolated using a Zymo Directzol RNA miniprep kit (Zymo Research 497 

R2050). An additional DNase step was performed after RNA extraction using a Turbo DNA-free kit (Thermo 498 

Fisher Scientific AM1907). RNA yield was quantitated using a Qubit fluorimeter and 100 ng of total RNA was 499 

used for cDNA synthesis in a 20-µl reaction using a High-Capacity cDNA Reverse Transcription Kit (Thermo 500 

Fisher Scientific 4368814). Additional control reactions for each infected condition were performed without 501 

reverse transcriptase enzyme to verify the efficiency of DNA removal from the samples. Three l of the 502 

resulting cDNA was used in triplicate wells for RT-qPCR analysis. Primers for RT-qPCR are listed in Table 1. 503 
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Ct values from replicate wells were averaged and copy number of individual gene expression was quantified 504 

using rKSHV WT-eGFP DNA. 505 

 506 

Quantification of viral binding/attachment using qPCR. To define the mechanistic role of gH in virion 507 

attachment to cell surface receptors, binding/attachment assays were performed to analyze rKSHV WT-eGFP 508 

and rKSHV∆gH-eGFP binding to target cell lines in vitro as described (66). Briefly, 2x10
5
 cells/well of HeLa, 509 

HUVEC, HFF-1, or MC116 cell types were seeded in 12-well plates overnight. The following day, target cells 510 

were incubated with ice-cold virus dilutions at the indicated concentrations (normalized to 10
2 

to 10
4
 genome 511 

copy numbers per cell as measured above by qPCR) at 4°C for 30 min. Cells were washed three times with ice-512 

cold PBS to remove unbound virus, then bound virus was quantified using qPCR. Samples were analyzed in 513 

triplicate and repeated three times. Briefly, genomic DNA was isolated from cell-bound KSHV using the 514 

QIAamp Mini Elute Virus Spin Kit. The ratio of viral DNA to cellular DNA as a measurement of attached virus 515 

was determined by qPCR as described above (FIG. 7). The relative values of bound viral copy number to 516 

cellular DNA were calculated on the basis of cycle threshold (ΔCt) values for viral genomic loci (K8.1) and a 517 

cellular genomic locus (GAPDH). 518 

 519 

Statistics. Data on viral titers are summarized as means  SD. P-values were calculated using Kruskal-Wallis 520 

nonparametric test for the difference between means, comparing each experimental group with the control 521 

group. For all analyses, P-values of less than 0.05 are considered statistically significant. P-values (N.S.: not 522 

significant, P < 0.05, P < 0.001) are shown in each figure. 523 
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Figure Legends and Tables 751 

FIG. 1. Mutagenesis of rKSHV∆gH-eGFP. (a) Schematic showing construction of gH-null BAC clone 752 

(rKSHV∆gH-eGFP) and its revertant (rKSHVgH-eGFP Rev). Using an En Passant two-step Red recombination 753 

system, three stop codons were inserted into the gH (ORF22) coding region of rKSHV WT-eGFP (nt37166–754 

nt37167; accession number GQ994935.1) to construct rKSHV∆gH-eGFP and subsequently removed to obtain 755 

rKSHVgH-eGFP Rev. (b) Agarose-gel electrophoresis of rKSHV-eGFP amplified using gene-specific primers 756 

flanking the mutation region shows integration and removal of kanamycin-resistance cassette (Kan
R
) in the 757 

indicated BAC clones during the two-step En Passant red recombination technique. The amplicon size indicates 758 

insertion (~ 2.1 Kb) and deletion (~ 1.1 Kb) of a kanamycin-resistance cassette in each BAC clone. (c) Agarose-759 

gel electrophoresis of rKSHV BACmids, digested with HindIII. The arrowheads indicate the variation in the 760 

length of restriction fragments due to insertion and deletion of Kan
R
 in the indicated BAC clones. (d) DNA 761 

sequencing results of gH mutagenesis sites show the sequence of the three-stop codon insertion site in the gH 762 

(nt37165) coding regions of full-length rKSHV WT-eGFP, rKSHV∆gH-eGFP, and rKSHVgH-eGFP Rev.  763 

 764 

FIG. 2. Establishment and characterization of stable iSLK cell lines expressing rKSHV∆gH-eGFP and its 765 

revertant. (a) eGFP expression in iSLK cells stably transfected with KSHV genome. Purified rKSHV∆gH-766 

eGFP or rKSHVgH-eGFP Rev DNA from bacteria were transfected into iSLK cells to generate stable virus 767 

producer cell lines, and stable iSLK cell lines expressing latent rKSHV∆gH-eGFP or rKSHVgH-eGFP Rev 768 

were selected. iSLK cells were used as a negative control; iSLK cells expressing rKSHV WT-eGFP were used 769 

as a positive control. Cells were imaged for eGFP expression using an EVOS Cell Imaging System at identical 770 

settings under 10x magnification. (b) qPCR quantification of KSHV genome copies. Equal numbers of seeded 771 

cells (iSLK rKSHV WT-eGFP, iSLK rKSHV∆gH-eGFP, or iSLK rKSHVgH-eGFP Rev) were induced into a 772 

lytic cycle; the virus produced was purified and genome copy number was quantified using qPCR with KSHV 773 

K8.1 primers (top panel), as compared to the absolute quantification standard curve obtained using pCAGGS-774 

 on July 10, 2019 by guest
http://jvi.asm

.org/
D

ow
nloaded from

 

http://jvi.asm.org/


Target Journals: JVI 

31 

K8.1 (bottom panel). P-values were calculated using a Kruskal-Wallis nonparametric test, and showed there 775 

was no difference in viral titers. (c) To assess expression of gH, LANA1, and K8.1 proteins, iSLK stable cells 776 

(negative control), iSLK rKSHV WT-eGFP (positive control), iSLK rKSHV∆gH-eGFP, or iSLK rKSHVgH-777 

eGFP Rev were induced for lytic replication. Purified virions from iSLK rKSHV WT-eGFP, iSLK rKSHV∆gH-778 

eGFP, iSLK rKSHVgH-eGFP Rev, purified gH/gL protein (for anti-gH detection), or induced infected cells (for 779 

LANA1 and K8.1 protein detection) were lysed and separated on 4-12% SDS-PAGE gels, and analyzed by 780 

immunoblotting using specific monoclonal antibodies against gH/gL (top), LANA1 (middle), or K8.1 (bottom).  781 

 782 

FIG. 3. rKSHV∆gH-eGFP matures, assembles, and egresses into the supernatant, as shown by electron 783 

microscopy (TEM) of cultured cells and purified viruses. iSLK rKSHV WT-eGFP, iSLK rKSH∆gH-eGFP, 784 

and iSLK rKSHVgH-eGFP Rev cells were lytically induced for 96 h, virions released into the supernatant were 785 

purified, and cells and supernatant/virions were processed for TEM. Briefly, cells were collected, washed in 786 

PBS, and fixed in 2% glutaraldehyde. Thin sections were made and observed using TEM. Representative TEM 787 

images (n=3 experiments) of ultra-thin sections of cultured cells with internalized virions (upper row) or TEM 788 

images of negatively stained purified virions (bottom row) are provided.  789 

 790 

FIG. 4. Infection of iSLK cells with rKSHV∆gH-eGFP. iSLK cells seeded (5x10
4
/well) in 48-well plates 791 

were incubated with purified virus obtained from induced iSLK rKSHV WT-eGFP, iSLK rKSHV∆gH-eGFP, or 792 

iSLK rKSHVgH-eGFP Rev cells (equal amount diluted in 0.5 ml of Opti-MEM media +/- 8 g/ml of polybrene 793 

as indicated), then spinoculated (as indicated) by centrifuge at 1,500 ×g for 1 h at 30°C. Complete media was 794 

added and plates were incubated for 48 h at RT, then observed using EVOS Cell Imaging fluorescent 795 

microscopy for eGFP expression. Images are representative pictures of experiments repeated in triplicate with 796 

10
2
 to 10

4
 viral genome copies per cell.  797 

 798 
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FIG. 5. rKSHV∆gH-eGFP does not infect epithelial, endothelial, or fibroblasts, but infection of B cell 799 

remains equivocal. (a) Indicated cell types were seeded (5x10
4
/well) in 48-well plates in triplicate and 800 

incubated with purified viruses (10
2 

to 10
4
 viral genome copies per cell) obtained from induced iSLK rKSHV 801 

WT-eGFP, iSLK rKSHV∆gH-eGFP, or iSLK rKSHVgH-eGFP Rev cells. After 48 h, eGFP+ cells were 802 

analyzed using flow cytometry (left) and imaged using EVOS Cell Imaging fluorescent microscopy (right) to 803 

determine viral infectivity. Representative flow cytometry plots and micrographs are shown (n3 independent 804 

experiments). (b–d) Tonsil-derived primary fibroblasts from four donors or MC116 cells were infected by 805 

spinoculation at 1500 x g for 1 h at RT with rKSHV WT-eGFP, rKSHV∆gH-eGFP, or rKSHVgH-eGFP Rev. 806 

Mock viral infection was performed using purified iSLK rKSHV WT-eGFP inactivated in 2% buffered 807 

formaldehyde in PBS for 60 min at 37°C. At Day 2 or 6 post-infection (dpi), tonsil-derived fibroblast cells or 808 

MC116 were analyzed; viable cells were gated from single cell populations, and eGFP+ cells were gated from 809 

viable cell populations. Tonsil-derived primary fibroblast cells (b) were not susceptible to infection by 810 

rKSHV∆gH-eGFP, whereas limited infection of MC116 B cells by rKSHV∆gH-eGFP (c–d) was observed. 811 

MC116 cells infected with viruses was imaged using EVOS Cell Imaging fluorescent microscopy. (e) (top 812 

panel). Percent infection of MC116 cells with formaldehyde-inactivated rKSHV WT-eGFP (mock), rKSHV 813 

WT-eGFP, rKSHV∆gH-eGFP, or rKSHVgH-eGFP Rev from three replicates (bottom panel) MC116 cells 814 

infected with formaldehyde-inactivated rKSHV WT-eGFP (mock), rKSHV WT-eGFP, or rKSHV∆gH-eGFP 815 

were FACS-sorted to enrich for eGFP expression. Sorted cells were grown for 4 days, lysed, and separated on 816 

4-12% SDS-PAGE gels, then analyzed by immunoblotting for the expression of KSHV latent (LANA1) and 817 

lytic (K8.1) genes along with cellular housekeeping gene β-actin as control. (f) RT-qPCR confirmation of 818 

LANA1 and K8.1 gene expression. cDNA was synthesized from 100 ng total RNA extracted from MC116 cells 819 

infected with formaldehyde-inactivated rKSHV WT-eGFP (mock), rKSHV WT-eGFP, or rKSHV∆gH-eGFP 820 

(FACS-sorted and enriched for eGFP expression). Three l of the resulting cDNA was used for RT-qPCR with 821 

KSHV LANA1 and K8.1 gene-specific primers and rKSHV WT-eGFP DNA was used as the standard for 822 
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quantification. RNA extracted from induced iSLK rKSHV WT-eGFP served as a positive control. Average Ct 823 

values obtained using GAPDH primers in individual samples are indicated below the graph. Samples were 824 

analyzed in triplicate and the experiment was repeated three times. (g) Immunoblot analysis of known gH/gL 825 

cellular receptors mediating KSHV infection in permissive human cells tested for infection. 1x10
6
 cells from 826 

each cell type were lysed and separated on 4-12% SDS-PAGE gels, then analyzed by immunoblotting using 827 

specific monoclonal antibodies against EphA2 (top), EphA4 (middle), or actin (bottom, loading control). (h) 828 

Flow cytometry analysis of EphA7 receptor expression in MC116, HEK-293 and iSLK cells. 829 

 830 

FIG. 6. Non-human epithelial and fibroblasts cell lines are not permissive to rKSHV∆gH-eGFP infection. 831 

Indicated cell types were seeded (5x10
4
/well) in 48-well plates in triplicate and incubated with purified viruses 832 

(10
4
 viral genome copies per cell) obtained from induced iSLK rKSHV WT-eGFP, iSLK rKSHV∆gH-eGFP, or 833 

iSLK rKSHVgH-eGFP Rev cells. After 48 h, eGFP+ cells were analyzed using flow cytometry (left panels) and 834 

imaged using EVOS Cell Imaging fluorescent microscopy (right panels) to determine viral infectivity. 835 

Representative flow cytometry plots and micrographs are shown (n3 independent experiments). 836 

 837 

FIG. 7. rKSHV∆gH-eGFP binding to target cells is not impaired. Attachment of KSHV to epithelial, 838 

endothelial, fibroblast, or B cells is not affected by absence of gH on KSHV virions. Cells were incubated with 839 

cold virus at the indicated concentrations at 4°C for 30 min, followed by DNA isolation. Quantification of the 840 

ratio of viral to cellular DNA as a measurement for attached virus was calculated based on ΔCt values of a viral 841 

locus (K8.1) and a genomic locus (GAPDH), as determined by qPCR and plotted against input viral genome 842 

number. Dashed grey (rKSHV WT-eGFP)/black (rKSHV∆gH-eGFP) lines show means of n3 independent 843 

experiments; error bars indicate standard deviation. 844 

  845 

Table 1. List of primers used in mutagenesis and qPCR 846 
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Primer 
type Primer name Primer sequence (5’-> 3’) 

BA
C

 m
ut

ag
en

es
is 

BACmut-ORF22-3stop-F ttgaatgtgatcacggagccggccctgacagagttgtggatAGTTAGATAGTcctccgccgaagtcgccgagTAGGGATAACAGGGTAATCGATTT 

BACmut-ORF22-3stop-R ttcagagttaccctgaggtcctcggcgacttcggcggaggACTATCTAACTAtccacaactctgtcagggccGCCAGTGTTACAACCAATTAACC 

BACmut-ORF22-Rev-F ttgaatgtgatcacggagccggccctgacagagttgtggatcctccgccgaagtcgccgagTAGGGATAACAGGGTAATCGATTT 

BACmut-ORF22-Rev-R 

ttcagagttaccctgaggtcctcggcgacttcggcggaggtccacaactctgtcagggccGCCAGTGTTACAACCAATTAACC 
 
* Sequence homology; lowercase indicates to rKSHV WT-eGFP, underlined uppercase indicates three-stop codons 
mutagenesis site, and uppercase indicates pEP-KanR sequence 

G
en

e 
sp

ec
ifi

c KSHV.219-ORF22-F CTGGCGATGCATATCGTTG 

KSHV.219-ORF22-R TGTTATAAGTTTGCGACGACG 

pEP-Kan F ATGAGCCATATTCAACGG 

pEP-Kan R CTCATCGAGCATCAAATG 

qP
C

R
 

K8.1-F TGCTAGTAACCGTGTGCCAT 

K8.1-R AGATGGGTCCGTATTTCTGC 

LANA1-F GCCTATACCAGGAAGTCCCA 

LANA1-R GAGCCACCGGTAAAGTAGGA 

GAPDH-F TGTCGCTGTTGAAGTCAGAGG 

GAPDH-R CATCAAGAAGGTGGTGAAGCAG 
Table. 1  List of primers used in mutagenesis and qPCR 
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