29 research outputs found

    A multispecies perspective on ecological impacts of climatic forcing

    Get PDF
    P>1. In the prevailing context of concerns over climate change and its potential impacts on ecosystems, evaluating ecological consequences of climatic forcing has become a critical issue. 2. Historical data on the abundance of organisms have been extensively used to characterize the ecological effects of climatic forcing through specific weather and/or climatic variables, with most of the studies confined to single population models. 3. However, population responses to environmental fluctuations typically depend upon positive and negative feedbacks induced by interactions with other species. It is therefore important to integrate the insights gained from single population approaches into a multispecies perspective. 4. Here we combine the hierarchical Bayesian modelling approach with the state-space formulation to extend the scope of previously proposed models of population dynamics under climatic forcing to multi-species systems. 5. We use our model to analyse long-term macro-moth (Lepidoptera) community data from the Rothamsted Insect Survey network in the UK, using winter rainfall and winter temperature as environmental covariates. 6. The effects of the two weather variables were consistent across species, being negative for winter rainfall and positive for winter temperature. The two weather variables jointly explained 15-40% of the total environmental variation affecting the dynamics of individual species, and could explain up to 90% of covariances in species dynamics. 7. The contribution of interspecific interactions to community-level variation was found to be weak compared to the contributions of environmental forcing and intraspecific interactions

    Variable strength of forest stand attributes and weather conditions on the questing activity of Ixodes ricinus ticks over years in managed forests

    Get PDF
    Given the ever-increasing human impact through land use and climate change on the environment, we crucially need to achieve a better understanding of those factors that influence the questing activity of ixodid ticks, a major disease-transmitting vector in temperate forests. We investigated variation in the relative questing nymph densities of Ixodes ricinus in differently managed forest types for three years (2008–2010) in SW Germany by drag sampling. We used a hierarchical Bayesian modeling approach to examine the relative effects of habitat and weather and to consider possible nested structures of habitat and climate forces. The questing activity of nymphs was considerably larger in young forest successional stages of thicket compared with pole wood and timber stages. Questing nymph density increased markedly with milder winter temperatures. Generally, the relative strength of the various environmental forces on questing nymph density differed across years. In particular, winter temperature had a negative effect on tick activity across sites in 2008 in contrast to the overall effect of temperature across years. Our results suggest that forest management practices have important impacts on questing nymph density. Variable weather conditions, however, might override the effects of forest management practices on the fluctuations and dynamics of tick populations and activity over years, in particular, the preceding winter temperatures. Therefore, robust predictions and the detection of possible interactions and nested structures of habitat and climate forces can only be quantified through the collection of long-term data. Such data are particularly important with regard to future scenarios of forest management and climate warming

    A niche remedy for the dynamical problems of neutral theory

    Full text link
    We demonstrate how niche theory and Hubbell's original formulation of neutral theory can be blended together into a general framework modeling the combined effects of selection, drift, speciation, and dispersal on community dynamics. This framework connects many seemingly unrelated ecological population models, and allows for quantitative predictions to be made about the impact of niche stabilizing and destabilizing forces on population extinction times and abundance distributions. In particular, the existence of niche stabilizing forces in our blended framework can simultaneously resolve two major problems with the dynamics of neutral theory, namely predictions of species lifetimes that are too short and species ages that are too long.Comment: 47 pages, 4 figures, Accepted to Theoretical Ecolog

    Environmental Control of the Dominant Phytoplankton in the Cariaco Basin: a Hierarchical Bayesian Approach

    No full text
    We develop a hierarchical Bayesian model linking the abundance of individual phytoplankton species with over a decade (1995-2011) of environmental data from the Cariaco Ocean Time Series Program in the Cariaco Basin, Venezuela, to characterize how phytoplankton respond to environmental forcing. Temperature, salinity, irradiance, and macronutrient concentrations account for 39% of the variation in log cell abundance across 67 species. Individual phytoplankton taxa varied widely in their response to these environmental variables. A principal component analysis of the environmental response profiles clearly distinguishes the responses of diatoms and dinoflagellates to environmental forcing. Phytoplankton abundance primarily varied with temperature, pH, and irradiance, with salinity and macronutrient concentrations acting as secondary drivers. In the aggregate, our results demonstrate that environmental changes, whether short-term or a result of climate change, should be expected to have dramatic consequences on the taxonomic composition of phytoplankton communities

    Bottom-Up and top-down effects influence Bruchid beetle individual performance but not population densities in the field

    Get PDF
    Plant quality (bottom-up) and natural enemies (top-down) can influence the individual performance of herbivorous insects on their host plants, but few studies measured at the same time the influence on population densities in the field. We investigated if plant quality of different wild common bean populations, Phaseolus vulgaris L. (Fabaceae), affects the performance of the bean weevil, Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae), and one of its enemies, the ectoparasitoid Dinarmus basalis (Rondani) (Hymenoptera: Pteromalidae), in controlled laboratory experiments. Additionally, we examined if parasitoids influence the beetles' development and if increased individual beetle and parasitoid fitness lead to higher field population densities. We show that bean quality and parasitoids affected individual bean weevil performance under laboratory and field conditions. In the presence of parasitoids, fewer and smaller beetles emerged. However, beetle and parasitoid performance were not correlated. Increased individual performance was not leading to higher population densities; we found no correlations between measured performance components and beetle field infestation levels or parasitism rates. We conclude that bottom-up or top-down effects measured at the individual level do not always translate into population effects; therefore it is important to discriminate between effects acting on individual insects and those acting on populations

    Dyn. Games Appl.

    No full text
    This paper investigates the role played by cooperation for the sustainable harvesting of an ecosystem. To achieve this, a bio-economic model based on a multi-species dynamics with interspecific relationships and multi-agent catches is considered. A comparison between the non-cooperative and cooperative optimal strategies is carried out. Revisiting the Tragedy of Open Access and over-exploitation issues, it is first proved analytically how harvesting pressure is larger in the non-cooperative case for every species. Then it is examined to what extent gains from cooperation can also be derived for the state of the ecosystem. It turns out that cooperation clearly promotes the conservation of every species when the number of agents is high. When the number of agents remains limited, results are more complicated, especially if a species-by-species viewpoint is adopted. However, we identify two metrics involving the state of every species and accounting for their ecological interactions which exhibit gains from cooperation at the ecosystem scale in the general case. Numerical examples illustrate the mathematical findings
    corecore