12 research outputs found

    Effects of urbanisation and a wastewater treatment plant on microplastic densities along a subtropical river system

    Get PDF
    Global freshwaters are increasingly threatened by pollutants emanating from human activities around watersheds. Microplastic pollution is an increasing problem for rivers worldwide, potentially threatening ecological integrity, ecosystem services and human health. We present quantifications and characterisations of sediment microplastic pollution in a subtropical river system in southern Africa, and relate distributions to wastewater treatment works, abiotic variables and urban environments. We additionally apply several diversity indices to decipher how microplastic types differ across the river system seasonally. Over two thousand microplastic particles were found across five sites and three seasons in the river system, comprising microbeads of various colours and microfibres. Microplastic concentrations were highest and most diverse in the hot–wet (mean range 76.0 ± 10.0–285.5 ± 44.5 microplastic kg−1) season as compared to the cool–dry (16.5 ± 4.5–27.0 ± 5.0 microplastic kg−1) and hot–dry (13.0 ± 4.0–29.0 ± 10.0 microplastic kg−1) seasons, and were mostly dominated by microfibres. However, no clear patterns were found in relation to wastewater treatment operations spatially, or in relation to abiotic variables in the river system. This study therefore finds a diverse range of microplastic types widely distributed in the river system that differ across seasons. Our results provide important, novel insights into plastic pollution in an understudied area of the Global South, and point to extensive pollution from sources outside of wastewater treatment works

    Nutrient release dynamics associated with native and invasive leaf litter decomposition: a Mesocosm Experiment

    Get PDF
    Leaf litter contributes to the functioning of aquatic ecosystems through allochthonous inputs of carbon, nitrogen, and other elements. Here, we examine leaf litter nutrient inputs and decomposition associated with four plant species using a mesocosm approach. Native sycamore fig Ficus sycomorus L., and silver cluster–leaf Terminalia sericea Burch. ex DC. decomposition dynamics were compared to invasive tickberry Lantana camara L. and guava Psidium guajava L., whereby phosphate, nitrate, nitrite, silicate, and ammonium releases were quantified over time. Leaf inputs significantly reduced pH, with reductions most marked by invasive L. camara. Conductivity was heightened by all leaf input treatments, except native T. sericea

    Behavioural Responses and Mortality of Mozambique Tilapia Oreochromis mossambicus to Three Commonly Used Macadamia Plantation Pesticides

    Get PDF
    The use of pesticides in agricultural systems may have deleterious effects on surrounding environments. Aquatic systems are no exception and are increasingly polluted through the leaching of pesticides from agricultural activities. However, the pesticide pollution effects on key aquatic species have not been studied in many regions. In southern Africa, increasing pesticide use associated with macadamia tree Macadamia integrifolia farming presents a growing risk to surrounding aquatic ecosystems. This study assessed behavioural responses of an important and widely-distributed freshwater fish, Mozambique tilapia Oreochromis mossambicus, following exposure to three commonly used macadamia pesticides (i.e., Karate Zeon 10 CS, Mulan 20 SP, Pyrinex 250 CS) at different concentrations (0.7–200 µL, 0.3–1000 mg, and 0.7–8750 µL, respectively) over 24 h. Behavioural responses, i.e., swimming erratically, surfacing, vertical positioning, loss of equilibrium, being motionless and mortality were observed after pesticides exposure. Lethal dose 50 (LD50) values of Karate Zeon 10 CS, Mulan 20 SP and Pyrinex 250 CS were 2.1 µL (per water litre dilution—WLD), 5.2 mg (WLD) and 21.5 µL (WLD), respectively. These concentrations are therefore expressed as a maximal threshold usage in the environment around macadamia farms and a minimum distance of the plantations to water systems should be considered. Further studies should examine effects on other fish species and aquatic invertebrates to inform on pesticide pollution threats and mitigation plans for the region

    Aquatic macroinvertebrate community colonisation and succession in macadamia orchard and communal area reservoirs: a case study of Luvuvhu River valley, South Africa

    No full text
    The demand for macadamia nut production worldwide has led to increased use of pesticides and chemicals for pest and disease control. Reservoirs in these macadamia farming sectors are at . The current study investigated macroinvertebrate colonisation and succession associated with two macadamia orchards and two communal area reservoirs. The potential effects of stressors from these land uses was tested for and compared using stone substrates over a 6-week period. Stone substrates from both reservoir types were abundantly colonised over time and the total macroinvertebrate taxa and abundance showed an increasing trend across the sampled weeks, with macadamia orchards having the highest number of macroinvertebrate taxa. Strong ecological succession was observed across reservoirs, with the initial succession of early colonisers – i.e., Chironominae (, Ostracoda (and Anax sp. (predator) within communal area reservoirs, and Chironominae, Ostracoda Radix natalensis (scrapers) in macadamia orchard reservoirs – followed by predatory colonisers such as Gyrinidae larvae, Trithemis sp. (macadamia orchard reservoirs), and Ranatra sp. (communal area reservoirs). Macroinvertebrate community structure differed significantly across sites and weeks, with no similarity being observed for communities across the different reservoirs. Redundancy analyses further highlighted 11 sediment chemistry variables (i.e., pH, resistivity, P, K, Na, Ca, Mg, Cu, B, Fe and S) which were significantly related to macroinvertebrate community structure. Thus, sediment variables were found to be better predictors of macroinvertebrate community structure in macadamia orchard reservoirs than communal area reservoirs. Consequently, we concluded that differences in colonisation ability among taxa and environmental stressors were important factors driving succession. These results add to the understanding of the macroinvertebrate colonisation processes and environmental stressors within agricultural landscapes, which can aid in the development of conservation management of freshwater ecosystems

    Macroinvertebrate colonisation associated with native and invasive leaf litter decomposition

    Get PDF
    Lake and reservoir ecosystems are regarded as heterotrophic detritus-based habitats which are dependent on both autochthonous and allochthonous organic matter for the majority of energy inputs. In particular, allochthonous detritus is in particular important for the trophic dynamics of microbial organisms, macroinvertebrates and benthic plants in freshwaters. Here, we assess macroinvertebrate colonisation, and quantify decomposition rates, of leaf litter from species of native and invasive plants in a small agricultural reservoir. Native fig Ficus sycomorus and silver cluster–leaf Terminalia sericea were compared to invasive tickberry Lantana camara and guava Psidium guajava, whereby macroinvertebrate colonisation was assessed over time. Leaf treatments had a significant, group-specific effect on abundances and composition among focal macroinvertebrates. Invasive leaves reduced Physidae and Oligochaeta abundances, yet Ostracoda were significantly more abundant in the presence of invasive P. guajava. Chironomidae relative abundances increased under invasive L. camara treatments, whilst differences among leaf treatment effects on Coenogrionidae abundances were not statistically clear. In turn, macroinvertebrate diversity did not differ significantly among plant treatment groups. The decomposition rate of the leaf litter demonstrated differences among the species, following a decreasing order of L. camara > F. sycomorus > T. sericea > P. guajava. The study results highlight that leaf litter species identity among invasive and native plants plays an important role in the colonisation of macroinvertebrates in small reservoirs, thereby differentially supporting aquatic environments and food webs. However, differences were not uniform across invader-native groupings. Nonetheless, certain invasive leaf litter decomposes faster than native litter, with possible implications for broader nutrient dynamics and subsequent community composition
    corecore