7 research outputs found

    Mapping of variations in child stunting, wasting and underweight within the states of India: the Global Burden of Disease Study 2000–2017

    Get PDF
    Background To inform actions at the district level under the National Nutrition Mission (NNM), we assessed the prevalence trends of child growth failure (CGF) indicators for all districts in India and inequality between districts within the states. Methods We assessed the trends of CGF indicators (stunting, wasting and underweight) from 2000 to 2017 across the districts of India, aggregated from 5 × 5 km grid estimates, using all accessible data from various surveys with subnational geographical information. The states were categorised into three groups using their Socio-demographic Index (SDI) levels calculated as part of the Global Burden of Disease Study based on per capita income, mean education and fertility rate in women younger than 25 years. Inequality between districts within the states was assessed using coefficient of variation (CV). We projected the prevalence of CGF indicators for the districts up to 2030 based on the trends from 2000 to 2017 to compare with the NNM 2022 targets for stunting and underweight, and the WHO/UNICEF 2030 targets for stunting and wasting. We assessed Pearson correlation coefficient between two major national surveys for district-level estimates of CGF indicators in the states. Findings The prevalence of stunting ranged 3.8-fold from 16.4% (95% UI 15.2–17.8) to 62.8% (95% UI 61.5–64.0) among the 723 districts of India in 2017, wasting ranged 5.4-fold from 5.5% (95% UI 5.1–6.1) to 30.0% (95% UI 28.2–31.8), and underweight ranged 4.6-fold from 11.0% (95% UI 10.5–11.9) to 51.0% (95% UI 49.9–52.1). 36.1% of the districts in India had stunting prevalence 40% or more, with 67.0% districts in the low SDI states group and only 1.1% districts in the high SDI states with this level of stunting. The prevalence of stunting declined significantly from 2010 to 2017 in 98.5% of the districts with a maximum decline of 41.2% (95% UI 40.3–42.5), wasting in 61.3% with a maximum decline of 44.0% (95% UI 42.3–46.7), and underweight in 95.0% with a maximum decline of 53.9% (95% UI 52.8–55.4). The CV varied 7.4-fold for stunting, 12.2-fold for wasting, and 8.6-fold for underweight between the states in 2017; the CV increased for stunting in 28 out of 31 states, for wasting in 16 states, and for underweight in 20 states from 2000 to 2017. In order to reach the NNM 2022 targets for stunting and underweight individually, 82.6% and 98.5% of the districts in India would need a rate of improvement higher than they had up to 2017, respectively. To achieve the WHO/UNICEF 2030 target for wasting, all districts in India would need a rate of improvement higher than they had up to 2017. The correlation between the two national surveys for district-level estimates was poor, with Pearson correlation coefficient of 0.7 only in Odisha and four small north-eastern states out of the 27 states covered by these surveys. Interpretation CGF indicators have improved in India, but there are substantial variations between the districts in their magnitude and rate of decline, and the inequality between districts has increased in a large proportion of the states. The poor correlation between the national surveys for CGF estimates highlights the need to standardise collection of anthropometric data in India. The district-level trends in this report provide a useful reference for targeting the efforts under NNM to reduce CGF across India and meet the Indian and global targets. Keywords Child growth failureDistrict-levelGeospatial mappingInequalityNational Nutrition MissionPrevalenceStuntingTime trendsUnder-fiveUndernutritionUnderweightWastingWHO/UNICEF target

    Nations within a nation: variations in epidemiological transition across the states of India, 1990–2016 in the Global Burden of Disease Study

    Get PDF
    18% of the world's population lives in India, and many states of India have populations similar to those of large countries. Action to effectively improve population health in India requires availability of reliable and comprehensive state-level estimates of disease burden and risk factors over time. Such comprehensive estimates have not been available so far for all major diseases and risk factors. Thus, we aimed to estimate the disease burden and risk factors in every state of India as part of the Global Burden of Disease (GBD) Study 2016

    The burden of mental disorders across the states of India: the Global Burden of Disease Study 1990–2017

    No full text
    Background: Mental disorders are among the leading causes of non-fatal disease burden in India, but a systematic understanding of their prevalence, disease burden, and risk factors is not readily available for each state of India. In this report, we describe the prevalence and disease burden of each mental disorder for the states of India, from 1990 to 2017. Methods: We used all accessible data from multiple sources to estimate the prevalence of mental disorders, years lived with disability (YLDs), and disability-adjusted life-years (DALYs) caused by these disorders for all the states of India from 1990 to 2017, as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We assessed the heterogeneity and time trends of mental disorders across the states of India. We grouped states on the basis of their Socio-demographic Index (SDI), which is a composite measure of per-capita income, mean education, and fertility rate in women younger than 25 years. We also assessed the association of major mental disorders with suicide deaths. We calculated 95% uncertainty intervals (UIs) for the point estimates. Findings: In 2017, 197·3 million (95% UI 178·4–216·4) people had mental disorders in India, including 45·7 million (42·4–49·8) with depressive disorders and 44·9 million (41·2–48·9) with anxiety disorders. We found a significant, but modest, correlation between the prevalence of depressive disorders and suicide death rate at the state level for females (r=0·33, p=0·0009) and males (r=0·19, p=0·015). The contribution of mental disorders to the total DALYs in India increased from 2·5% (2·0–3·1) in 1990 to 4·7% (3·7–5·6) in 2017. In 2017, depressive disorders contributed the most to the total mental disorders DALYs (33·8%, 29·5–38·5), followed by anxiety disorders (19·0%, 15·9–22·4), idiopathic developmental intellectual disability (IDID; 10·8%, 6·3–15·9), schizophrenia (9·8%, 7·7–12·4), bipolar disorder (6·9%, 4·9–9·6), conduct disorder (5·9%, 4·0–8·1), autism spectrum disorders (3·2%, 2·7–3·8), eating disorders (2·2%, 1·7–2·8), and attention-deficit hyperactivity disorder (ADHD; 0·3%, 0·2–0·5); other mental disorders comprised 8·0% (6·1–10·1) of DALYs. Almost all (>99·9%) of these DALYs were made up of YLDs. The DALY rate point estimates of mental disorders with onset predominantly in childhood and adolescence (IDID, conduct disorder, autism spectrum disorders, and ADHD) were higher in low SDI states than in middle SDI and high SDI states in 2017, whereas the trend was reversed for mental disorders that manifest predominantly during adulthood. Although the prevalence of mental disorders with onset in childhood and adolescence decreased in India from 1990 to 2017, with a stronger decrease in high SDI and middle SDI states than in low SDI states, the prevalence of mental disorders that manifest predominantly during adulthood increased during this period. Interpretation: One in seven Indians were affected by mental disorders of varying severity in 2017. The proportional contribution of mental disorders to the total disease burden in India has almost doubled since 1990. Substantial variations exist between states in the burden from different mental disorders and in their trends over time. These state-specific trends of each mental disorder reported here could guide appropriate policies and health system response to more effectively address the burden of mental disorders in India. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India

    The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: the Global Burden of Disease Study 2017

    No full text
    Summary: Background: Air pollution is a major planetary health risk, with India estimated to have some of the worst levels globally. To inform action at subnational levels in India, we estimated the exposure to air pollution and its impact on deaths, disease burden, and life expectancy in every state of India in 2017. Methods: We estimated exposure to air pollution, including ambient particulate matter pollution, defined as the annual average gridded concentration of PM2.5, and household air pollution, defined as percentage of households using solid cooking fuels and the corresponding exposure to PM2.5, across the states of India using accessible data from multiple sources as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017. The states were categorised into three Socio-demographic Index (SDI) levels as calculated by GBD 2017 on the basis of lag-distributed per-capita income, mean education in people aged 15 years or older, and total fertility rate in people younger than 25 years. We estimated deaths and disability-adjusted life-years (DALYs) attributable to air pollution exposure, on the basis of exposure–response relationships from the published literature, as assessed in GBD 2017; the proportion of total global air pollution DALYs in India; and what the life expectancy would have been in each state of India if air pollution levels had been less than the minimum level causing health loss. Findings: The annual population-weighted mean exposure to ambient particulate matter PM2·5 in India was 89·9 μg/m3 (95% uncertainty interval [UI] 67·0–112·0) in 2017. Most states, and 76·8% of the population of India, were exposed to annual population-weighted mean PM2·5 greater than 40 μg/m3, which is the limit recommended by the National Ambient Air Quality Standards in India. Delhi had the highest annual population-weighted mean PM2·5 in 2017, followed by Uttar Pradesh, Bihar, and Haryana in north India, all with mean values greater than 125 μg/m3. The proportion of population using solid fuels in India was 55·5% (54·8–56·2) in 2017, which exceeded 75% in the low SDI states of Bihar, Jharkhand, and Odisha. 1·24 million (1·09–1·39) deaths in India in 2017, which were 12·5% of the total deaths, were attributable to air pollution, including 0·67 million (0·55–0·79) from ambient particulate matter pollution and 0·48 million (0·39–0·58) from household air pollution. Of these deaths attributable to air pollution, 51·4% were in people younger than 70 years. India contributed 18·1% of the global population but had 26·2% of the global air pollution DALYs in 2017. The ambient particulate matter pollution DALY rate was highest in the north Indian states of Uttar Pradesh, Haryana, Delhi, Punjab, and Rajasthan, spread across the three SDI state groups, and the household air pollution DALY rate was highest in the low SDI states of Chhattisgarh, Rajasthan, Madhya Pradesh, and Assam in north and northeast India. We estimated that if the air pollution level in India were less than the minimum causing health loss, the average life expectancy in 2017 would have been higher by 1·7 years (1·6–1·9), with this increase exceeding 2 years in the north Indian states of Rajasthan, Uttar Pradesh, and Haryana. Interpretation: India has disproportionately high mortality and disease burden due to air pollution. This burden is generally highest in the low SDI states of north India. Reducing the substantial avoidable deaths and disease burden from this major environmental risk is dependent on rapid deployment of effective multisectoral policies throughout India that are commensurate with the magnitude of air pollution in each state. Funding: Bill & Melinda Gates Foundation; and Indian Council of Medical Research, Department of Health Research, Ministry of Health and Family Welfare, Government of India

    Subnational mapping of under-5 and neonatal mortality trends in India: the Global Burden of Disease Study 2000-17

    Get PDF
    Background India has made substantial progress in improving child survival over the past few decades, but a comprehensive understanding of child mortality trends at disaggregated geographical levels is not available. We present a detailed analysis of subnational trends of child mortality to inform efforts aimed at meeting the India National Health Policy (NHP) and Sustainable Development Goal (SDG) targets for child mortality. Methods We assessed the under-5 mortality rate (U5MR) and neonatal mortality rate (NMR) from 2000 to 2017 in 5 × 5 km grids across India, and for the districts and states of India, using all accessible data from various sources including surveys with subnational geographical information. The 31 states and groups of union territories were categorised into three groups using their Socio-demographic Index (SDI) level, calculated as part of the Global Burden of Diseases, Injuries, and Risk Factors Study on the basis of per-capita income, mean education, and total fertility rate in women younger than 25 years. Inequality between districts within the states was assessed using the coefficient of variation. We projected U5MR and NMR for the states and districts up to 2025 and 2030 on the basis of the trends from 2000 to 2017 and compared these projections with the NHP 2025 and SDG 2030 targets for U5MR (23 deaths and 25 deaths per 1000 livebirths, respectively) and NMR (16 deaths and 12 deaths per 1000 livebirths, respectively). We assessed the causes of child death and the contribution of risk factors to child deaths at the state level. Findings U5MR in India decreased from 83·1 (95% uncertainty interval [UI] 76·7–90·1) in 2000 to 42·4 (36·5–50·0) per 1000 livebirths in 2017, and NMR from 38·0 (34·2–41·6) to 23·5 (20·1–27·8) per 1000 livebirths. U5MR varied 5·7 times between the states of India and 10·5 times between the 723 districts of India in 2017, whereas NMR varied 4·5 times and 8·0 times, respectively. In the low SDI states, 275 (88%) districts had a U5MR of 40 or more per 1000 livebirths and 291 (93%) districts had an NMR of 20 or more per 1000 livebirths in 2017. The annual rate of change from 2010 to 2017 varied among the districts from a 9·02% (95% UI 6·30–11·63) reduction to no significant change for U5MR and from an 8·05% (95% UI 5·34–10·74) reduction to no significant change for NMR. Inequality between districts within the states increased from 2000 to 2017 in 23 of the 31 states for U5MR and in 24 states for NMR, with the largest increases in Odisha and Assam among the low SDI states. If the trends observed up to 2017 were to continue, India would meet the SDG 2030 U5MR target but not the SDG 2030 NMR target or either of the NHP 2025 targets. To reach the SDG 2030 targets individually, 246 (34%) districts for U5MR and 430 (59%) districts for NMR would need a higher rate of improvement than they had up to 2017. For all major causes of under-5 death in India, the death rate decreased between 2000 and 2017, with the highest decline for infectious diseases, intermediate decline for neonatal disorders, and the smallest decline for congenital birth defects, although the magnitude of decline varied widely between the states. Child and maternal malnutrition was the predominant risk factor, to which 68·2% (65·8–70·7) of under-5 deaths and 83·0% (80·6–85·0) of neonatal deaths in India could be attributed in 2017; 10·8% (9·1–12·4) of under-5 deaths could be attributed to unsafe water and sanitation and 8·8% (7·0–10·3) to air pollution. Interpretation India has made gains in child survival, but there are substantial variations between the states in the magnitude and rate of decline in mortality, and even higher variations between the districts of India. Inequality between districts within states has increased for the majority of the states. The district-level trends presented here can provide crucial guidance for targeted efforts needed in India to reduce child mortality to meet the Indian and global child survival targets. District-level mortality trends along with state-level trends in causes of under-5 and neonatal death and the risk factors in this Article provide a comprehensive reference for further planning of child mortality reduction in India
    corecore