3,072 research outputs found

    High-spin structures as the probes of proton-neutron pairing

    Get PDF
    Rotating N=ZN=Z nuclei in the mass A=5880A=58-80 region have been studied within the framework of isovector mean field theory. Available data is well and systematically described in the calculations. The present study supports the presence of strong isovector npnp pair field at low spin, which is, however, destroyed at high spin. No clear evidence for the existence of the isoscalar t=0t=0 npnp pairing has been found.Comment: Invited talk presented at the XIII Nuclear Physics Workshop, Kazimierz Dolny, Sept. 27 - Oct. 1, Poland; submitted to International Journal of Modern Physics

    A deformed QRPA formalism for single and two-neutrino double beta decay

    Full text link
    We use a deformed QRPA formalism to describe simultaneously the energy distributions of the single beta Gamow-Teller strength and the two-neutrino double beta decay matrix elements. Calculations are performed in a series of double beta decay partners with A = 48, 76, 82, 96, 100, 116, 128, 130, 136 and 150, using deformed Woods-Saxon potentials and deformed Skyrme Hartree-Fock mean fields. The formalism includes a quasiparticle deformed basis and residual spin-isospin forces in the particle-hole and particle-particle channels. We discuss the sensitivity of the parent and daughter Gamow-Teller strength distributions in single beta decay, as well as the sensitivity of the double beta decay matrix elements to the deformed mean field and to the residual interactions. Nuclear deformation is found to be a mechanism of suppression of the two-neutrino double beta decay. The double beta decay matrix elements are found to have maximum values for about equal deformations of parent and daughter nuclei. They decrease rapidly when differences in deformations increase. We remark the importance of a proper simultaneous description of both double beta decay and single Gamow-Teller strength distributions. Finally, we conclude that for further progress in the field it would be useful to improve and complete the experimental information on the studied Gamow-Teller strengths and nuclear deformations.Comment: 33 pages, 19 figures. To be published in Phys. Rev.

    Nuclear deformation and neutrinoless double-β\beta decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd nuclei in mass mechanism

    Full text link
    The (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay of 94,96^{94,96}Zr, 98,100^{98,100}Mo, 104^{104}Ru, 110^{110}Pd, 128,130^{128,130}Te and 150^{150}Nd isotopes for the 0+0+0^{+}\to 0^{+} transition is studied in the Projected Hartree-Fock-Bogoliubov framework. In our earlier work, the reliability of HFB intrinsic wave functions participating in the ββ\beta ^{-}\beta ^{-} decay of the above mentioned nuclei has been established by obtaining an overall agreement between the theoretically calculated spectroscopic properties, namely yrast spectra, reduced B(E2B(E2:0+2+)0^{+}\to 2^{+}) transition probabilities, quadrupole moments Q(2+)Q(2^{+}), gyromagnetic factors g(2+)g(2^{+}) as well as half-lives T1/22νT_{1/2}^{2\nu} for the 0+0+0^{+}\to 0^{+} transition and the available experimental data. In the present work, we study the (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay for the 0+0+0^{+}\to 0^{+} transition in the mass mechanism and extract limits on effective mass of light as well as heavy neutrinos from the observed half-lives T1/20ν(0+0+)T_{1/2}^{0\nu}(0^{+}\to 0^{+}) using nuclear transition matrix elements calculated with the same set of wave functions. Further, the effect of deformation on the nuclear transition matrix elements required to study the (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay in the mass mechanism is investigated. It is noticed that the deformation effect on nuclear transition matrix elements is of approximately same magnitude in (ββ)2ν(\beta ^{-}\beta ^{-})_{2\nu} and (ββ)0ν(\beta ^{-}\beta ^{-})_{0\nu} decay.Comment: 15 pages, 1 figur

    Informed consent in clinical trials using stem cells: Suggestions and points of attention from informed consent training workshops in Japan

    Get PDF
    Informed consent (IC) is an essential requirement of ethical research involving human participants, and is usually achieved by providing prospective research participants (PRPs) with a document that explains the study and its procedures. However, results of a series of IC workshops held in Tokyo during 2014 indicate that consent forms alone are not enough to achieve full IC in regenerative medicine research, due to the necessity of long-term patient-safety observations to meet the ethical challenges of such research. Adequate training of the people who are responsible for obtaining IC (elucidators) is also necessary to ensure full IC. Elucidators must be able to provide PRPs with sufficient information to ensure adequate comprehension of the study and its potential after-effects; judge PRPs’ voluntariness and eligibility; and establish and/or maintain partnerships with PRPs. The workshops used role-playing simulations, to demonstrate how to effectively obtain fuller IC, to members of several Japanese research groups preparing for clinical stem cell trials. Workshop results were correlated with the results of a 2013 workshop on what information patients want when considering participation in induced pluripotent stem cell (iPSC) research. The correlated results showed the need for continuous training and education of elucidators in order to make sure that they acquire and maintain IC competency

    Shell Model Study of the Double Beta Decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe

    Get PDF
    The lifetimes for the double beta decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe are calculated using very large shell model spaces. The two neutrino matrix elements obtained are in good agreement with the present experimental data. For <1<1 eV we predict the following upper bounds to the half-lives for the neutrinoless mode: T1/2(0ν)(Ge)>1.851025yr.T^{(0\nu)}_{1/2}(Ge) > 1.85\,10^{25} yr., T1/2(0ν)(Se)>2.361024yr.T^{(0\nu)}_{1/2}(Se) > 2.36\,10^{24} yr. and T1/2(0ν)(Xe)>1.211025yrT^{(0\nu)}_{1/2}(Xe) > 1.21\,10^{25} yr. These results are the first from a new generation of Shell Model calculations reaching O(108^{8}) dimensions

    DNA Torsional Solitons in Presence of localized Inhomogeneities

    Full text link
    In the present paper we investigate the influence of inhomogeneities in the dynamics and stability of DNA open states, modeled as propagating solitons in the spirit of a Generalized Yakushevish Model. It is a direct consecuence of our model that there exists a critical distance between the soliton's center of mass and the inhomogeneity at which the interaction between them can change the stability of the open state.Furtherly from this results was derived a renormalized potential funtion.Comment: RevTex, 13 pages, 3 figures, final versio

    Repulsive long-range forces between anisotropic atoms and dielectrics

    Full text link
    We investigate long-range forces between atoms with anisotropic electric polarizability interacting with dielectrics having anisotropic permittivity in the weak-coupling approximation. Unstable configurations in which the force between the objects is repulsive are constructed. Such configurations exist for three anisotropic atoms as well as for an anisotropic atom above a dielectric plate with a hole whose permittivity is anisotropic. Apart from the absolute magnitude of the force, the dependence on the configuration is qualitatively the same as for metallic objects for which the anisotropy is a purely geometric effect. In the weak limit closed analytic expressions for rather complicated configurations are obtained. The non-monotonic dependence of the interaction energy on separation is related to the fact that the electromagnetic Green's dyadic is not positive definite. The analysis in the weak limit is found to also semi-quantitatively explain the dependence of Casimir forces on the orientation of anisotropic dielectrics observed experimentally. Contrary to the scalar case, irreducible electromagnetic three-body energies can change sign. We trace this to the fact that the electromagnetic Green's dyadic is not positive definite.Comment: 9 page

    NMR/ON (Nuclear Magnetic Resonance in Oriented Nuclei) Study of Fe-Si Single Crystal

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付
    corecore