261 research outputs found

    Kaon Condensation in Neutron Star Matter with Hyperons

    Full text link
    Based on the Kaplan-Nelson Lagrangian, we investigate kaon condensation in dense neutron star matter allowing for the explicit presence of hyperons. Using various models we find that the condensate threshold is sensitive to the behavior of the scalar density; the more rapidly it increases with baryon density, the lower is the threshold for condensation. The presence of hyperons, particularly the Σ\Sigma^-, shifts the threshold for KK^- condensation to a higher density. In the mean field approach, with hyperons, the condensate amplitude grows sufficiently rapidly that the nucleon effective mass vanishes at a finite density and a satisfactory treatment of the thermodynamics cannot be achieved. Thus, calculations of kaon-baryon interactions beyond the mean field level appear to be necessary.Comment: 13 pages, latex, 3 figures by fax/mail from [email protected]

    Global Calculations of Density Waves and Gap Formation in Protoplanetary Disks using a Moving Mesh

    Full text link
    We calculate the global quasi-steady state of a thin disk perturbed by a low-mass protoplanet orbiting at a fixed radius using extremely high-resolution numerical integrations of Euler's equations in two dimensions. The calculations are carried out using a moving computational domain, which greatly reduces advection errors and allows for much longer time-steps than a fixed grid. We calculate the angular momentum flux and the torque density as a function of radius and compare them with analytical predictions. We discuss the quasi-steady state after 100 orbits and the prospects for gap formation by low mass planets.Comment: Accepted to Ap

    Applied aerial spectroscopy: A case study on remote sensing of an ancient and semi-natural woodland

    Get PDF
    An area of ancient and semi-natural woodland (ASNW) has been investigated by applied aerial spectroscopy using an unmanned aerial vehicle (UAV) with multispectral image (MSI) camera. A novel normalised difference spectral index (NDSI) algorithm was developed using principal component analysis (PCA). This novel NDSI was then combined with a simple segmentation method of thresholding and applied for the identification of native tree species as well as the overall health of the woodland. Using this new approach allowed the identification of trees at canopy level, across 7.4 hectares (73,934 m2) of ASNW, as oak (53%), silver birch (37%), empty space (9%) and dead trees (1%). This UAV derived data was corroborated, for its accuracy, by a statistically valid ground-level field study that identified oak (47%), silver birch (46%) and dead trees (7.4%). This simple innovative approach, using a low-cost multirotor UAV with MSI camera, is both rapid to deploy, was flown around 100 m above ground level, provides useable high resolution (5.3 cm / pixel) data within 22 mins that can be interrogated using readily available PC-based software to identify tree species. In addition, it provides an overall oversight of woodland health and has the potential to inform a future woodland regeneration strategy

    The Use of an Unmanned Aerial Vehicle for Tree Phenotyping Studies

    Get PDF
    A strip of 20th-century landscape woodland planted alongside a 17th to mid-18th century ancient and semi-natural woodland (ASNW) was investigated by applied aerial spectroscopy using an unmanned aerial vehicle (UAV) with a multispectral image camera (MSI). A simple classification approach of normalized difference spectral index (NDSI), derived using principal component analysis (PCA), enabled the identification of the non-native trees within the 20th-century boundary. The tree species within this boundary, classified by NDSI, were further segmented by the machine learning segmentation method of k-means clustering. This combined innovative approach has enabled the identification of multiple tree species in the 20th-century boundary. Phenotyping of trees at canopy level using the UAV with MSI, across 8052 m2, identified black pine (23), Norway maple (19), Scots pine (12), and sycamore (19) as well as native trees (oak and silver birch, 27). This derived data was corroborated by field identification at ground-level, over an area of 6785 m2, that confirmed the presence of black pine (26), Norway maple (30), Scots pine (10), and sycamore (14) as well as other trees (oak and silver birch, 20). The benefits of using a UAV, with an MSI camera, for monitoring tree boundaries next to a new housing development are demonstrated

    Temperature-dependent Hc2H_{c2} anisotropy in MgB2_2 as inferred from measurements on polycrystals

    Get PDF
    We present data on temperature-dependent anisotropy of the upper critical field of MgB2_2 obtained from the analysis of measurements on high purity, low resistivity polycrystals. The anisotropy decreases in a monotonic fashion with increase of temperature

    Enhancement of Thermoelectric Performance of n-Type PbSe by Cr Doping with Optimized Carrier Concentration

    Get PDF
    Ti, V, Cr, Nb, and Mo are found to be effective at increasing the Seebeck coefficient and power factor of n-type PbSe at temperatures below 600 K. It is found that the higher Seebeck coefficients and power factors are due to higher Hall mobility ≈1000 cm[superscript 2] V[superscript −]1s[superscript −1] at lower carrier concentration. A larger average ZT value (relevant for applications) can be obtained by an optimization of carrier concentration to ≈10[superscript 18]–10[superscript 19] cm[superscript −3]. Even though the highest room temperature power factor ≈3.3 × 10[superscript −3] W m[superscript −1] K[superscript −2] is found in 1 at% Mo-doped PbSe, the highest ZT is achieved in Cr-doped PbSe. Combined with the lower thermal conductivity, ZT is improved to ≈0.4 at room temperature and peak ZTs of ≈1.0 are observed at ≈573 K for Pb[subscript 0.9925]Cr[subscript 0.0075]Se and ≈673 K for Pb[subscript 0.995]Cr[subscript 0.005]Se. The calculated device efficiency of Pb[subscript 0.995]Cr[subscript 0.005]Se is as high as ≈12.5% with cold side 300 K and hot side 873 K, higher than those of all the n-type PbSe materials reported in the literature.United States. Dept. of Energy. Office of Science (Solid-State Solar-Thermal Energy Conversion Center Award DE-SC0001299

    Kaon Zero-Point Fluctuations in Neutron Star Matter

    Get PDF
    We investigate the contribution of zero-point motion, arising from fluctuations in kaon modes, to the ground state properties of neutron star matter containing a Bose condensate of kaons. The zero-point energy is derived via the thermodynamic partition function, by integrating out fluctuations for an arbitrary value of the condensate field. It is shown that the vacuum counterterms of the chiral Lagrangian ensure the cancellation of divergences dependent on μ\mu, the charge chemical potential, which may be regarded as an external vector potential. The total grand potential, consisting of the tree-level potential, the zero-point contribution, and the counterterm potential, is extremized to yield a locally charge neutral, beta-equilibrated and minimum energy ground state. In some regions of parameter space we encounter the well-known problem of a complex effective potential. Where the potential is real and solutions can be obtained, the contributions from fluctuations are found to be small in comparison with tree-level contributions.Comment: 40 pages RevTeX, 3 epsf figure
    corecore