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Abstract: A strip of 20th-century landscape woodland planted alongside a 17th to mid-18th century 
ancient and semi-natural woodland (ASNW) was investigated by applied aerial spectroscopy using 
an unmanned aerial vehicle (UAV) with a multispectral image camera (MSI). A simple classification 
approach of normalized difference spectral index (NDSI), derived using principal component anal-
ysis (PCA), enabled the identification of the non-native trees within the 20th-century boundary. The 
tree species within this boundary, classified by NDSI, were further segmented by the machine learn-
ing segmentation method of k-means clustering. This combined innovative approach has enabled 
the identification of multiple tree species in the 20th-century boundary. Phenotyping of trees at can-
opy level using the UAV with MSI, across 8052 m2, identified black pine (23%), Norway maple 
(19%), Scots pine (12%), and sycamore (19%) as well as native trees (oak and silver birch, 27%). This 
derived data was corroborated by field identification at ground-level, over an area of 6785 m2, that 
confirmed the presence of black pine (26%), Norway maple (30%), Scots pine (10%), and sycamore 
(14%) as well as other trees (oak and silver birch, 20%). The benefits of using a UAV, with an MSI 
camera, for monitoring tree boundaries next to a new housing development are demonstrated. 

Keywords: Unmanned aerial vehicles; ancient woodland; invasive species identification;  
normalized difference spectral index (NDSI); k-means clustering 
 

1. Introduction 
Designated woodlands are protected places for native species of trees and shrubs 

that provide habitats for numerous species of fungi, invertebrates, birds, mammals, and 
reptiles that all contribute to providing a balanced ecosystem [1]. One of the major chal-
lenges in conserving designated woodlands is controlling the spread of invasive plant 
species that are non-native to the location [2]. Invasive plant species in woodland are trees 
and shrubs introduced by humans, negatively impacting native plant and animal com-
munities [3]. Invasive plant species in designated woodlands can expand through natural 
regeneration or vegetative spread and eventually cover large land areas. This can inhibit 
the growth or reproduction of native species and adversely affect the ecosystem [2]. In 
addition, the spread of invasive plant species is ultimately costly to remove after their 
occupation within a woodland [4]. 

There has been a woodland component in the UK landscape since the end of the most 
recent Ice Age (12,000 years ago) [5]. By the Iron Age (750 BC-40 AD), 50% of the wood-
land in the UK was cleared due to agricultural activity, and by the 20th century, only 5% 
of the woodland was remaining [6]. In the 20th century, the need to conserve woodland 
was recognized, and in 1950, the conservation movement began to protect ancient wood-
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land as nature reserve sites [7]. The term “ancient woodland” is used to describe wood-
land that dates from 1600 AD; however, some of these woodlands have been later modi-
fied by human activity and so are often referred to as ancient and semi-natural woodland 
(ASNW) [5]. Many of these woodlands were planted with native and non-native conifer 
or deciduous species to address national timber shortages. These are referred to as Plan-
tations on Ancient Woodland Sites (PAWS) [8]. These species often create unsuitable con-
ditions for native species through either deep shade or changes to soil pH. Some planta-
tion species can be invasive and pose a threat to the wider ancient woodland community. 
In comparison with some European countries, the UK is one of the least-wooded coun-
tries. It is, therefore, an important cultural and social responsibility to protect the destruc-
tion of the woodlands by urban development and to restore and create natural ecosystems 
that are diverse and rich in wildlife. 

There are approximately 340,000 hectares of ancient woodland in England. Of these, 
200,000 hectares are considered semi-natural, that is, of natural origin rather than artifi-
cially planted [9]. Methods for monitoring invasive tree species in woodland has tradi-
tionally involved field-based assessment methods to assess trees below the canopy level. 
However, issues with this approach can be due to restricted access due to ground cover 
plants and the physical location [10]. In addition, field assessment methods are costly and 
can be time-consuming and; hence, the interest in the use of remote-sensing technology 
has been long favored as a tool for monitoring invasive species [1]. Remote sensing tech-
niques have become an area of interest during the last two decades to monitor invasive 
species as they can provide a synoptic view over a large area. Remote sensing is a non-
destructive technique that uses a diverse array of sensors and platforms to collect infor-
mation from above the Earth’s surface without contacting the object under investigation. 
There are two main remote sensing approaches for mapping and locating invasive tree 
species: low spatial resolution and high spectral resolution via satellite and (un)manned 
aircraft remote sensing platforms [11]. The spectral resolution is defined by the number of 
different wavelengths in the electromagnetic spectrum operated by the sensors in a re-
mote sensing platform [12]. Spatial resolution is defined by the number of pixels required 
to comprise an image by the ground sampling distance (GSD) of a sensor. The high spec-
tral resolution entails using hyperspectral sensors, often via satellites, to collect aerial im-
ages from hundreds of narrow bands in the visible, near-infrared (NIR) and shortwave 
infrared regions of the electromagnetic spectrum [13]. Hence, hyperspectral satellite plat-
forms have distinguished invasive tree species by their spectral signatures, structural and 
functional properties [13–18]. However, hyperspectral satellite platforms for monitoring 
invasive tree species have several limitations, such as the cost of the hyperspectral sensors 
and the resultant data complexity, which requires high computing power for the pro-
cessing, which is time-consuming [11]. Moreover, the low spatial resolution of 30–300 
m/pixel offered by the satellite platforms becomes inefficient at identifying a small popu-
lation of invasive tree species and shrubs [19]. Furthermore, satellites offer a low temporal 
resolution, restricting a multiday revisit cycle to a location [19]. Conventional airborne 
multispectral and hyperspectral manned aircraft have also been used for invasive plant 
species monitoring [20–23]. However, manned aircraft are low in spatial resolution, costly 
to maintain, require operating personal, and are not economically viable for most invasive 
species monitoring and management, especially when continuous monitoring is required. 

UAV, popularly known as drones, are controlled without an onboard pilot and can 
fly autonomously or with the help of a remote control ‘pilot’ on the ground. UAV remote 
sensing has emerged in recent years to monitor invasive tree species using either a con-
sumer-grade digital camera or multispectral sensors which use the visible and NIR re-
gions of the electromagnetic spectrum. The ultra-high spatial resolution of 0.1–0.5 
cm/pixel offered by UAVs potentially enables the effective detection and monitoring of 
understory invasive plant species using cost-efficient sensors [24]. Furthermore, UAVs are 
less susceptible to the weather, specifically cloud cover, due to their significantly lower 
flight altitude, e.g., 100 m; UAVs can fly below low clouds removing any potential barrier 
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from their field of view as well as offering flexible temporal resolution where data can be 
collected multiple times in a day. Due to the benefits of UAV, studies for monitoring in-
vasive plant species have emerged globally from Africa, North America, South America, 
Europe, and New Zealand with promising results [2,11,19,25–30]. However, these studies 
often use fixed-wing UAVs that offer less stability. They can only move forward and can-
not hover in the air, leading to unsatisfactory data collection compared to multirotor 
UAVs. Moreover, the sensors mounted on these UAV platforms are mainly RGB and NIR, 
which limits the spectral resolution for obtaining accurate spectral features of the invasive 
tree species. Furthermore, the hyperspectral sensors used in some of these studies are ex-
pensive and require extensive interpretation of data [2,30]. Thus, the most promising and 
cost-efficient approach employs multispectral sensors to capture images across spectral 
channels from the visible to NIR regions. Amongst recent research using multispectral 
UAVs to detect invasive tree species has been the mapping of Sydney golden wattles 
plants in Portugal by random forest classification models [28] and detection of invasive 
exotic conifers of Scots pine and ponderosa pine in New Zealand by random forest and 
logistic regression models [24]. However, despite the great potential offered by UAVs, 
obtaining meaningful information from the captured data remains challenging. Most of 
the methods require extensive machine learning classification methods using random for-
est, regression trees or a support vector mechanism which require a data training set, mak-
ing these approaches time consuming and computationally intensive. It is doubtful if 
these methods are widely transferable. 

Simpler image classification methods linked with principal component analysis 
(PCA) and k-means segmentation might offer promising results as they require little train-
ing. PCA is a multivariate statistical method often applied in image analysis and classifi-
cation to reduce the amount of redundant information. PCA provides the most important 
information in an image which can be useful to differentiate scene elements [31]. The re-
sults obtained from PCA for each multispectral band can be used to derive a suitable nor-
malized difference spectral index (NDSI) that effectively enhances spectral features not 
visible in an RGB image. Currently, the available spectral indices are limited for a specific 
use, such as the Normalized Difference Vegetation Index (NDVI), which monitors the 
health and growth of trees or crops. This research investigates the use of information from 
each multispectral band to derive a suitable NDSI specifically to determine the invasive 
tree species. This innovative approach compensates for the variation in pigmentation from 
chlorophyll and carotenoids, which can vary within a tree. Additionally,, the discrimi-
nated trees from the NDSI algorithm can be classified using the simpler segmentation 
methods of k-means clustering. K-means clustering is an unsupervised learning algorithm 
that aims to segment the number of trees in an image to individual tree clusters. By con-
sidering the spectral features of individual trees, or phenotyping, and grouping a distinc-
tive pixel value for each cluster, this enables the identification and quantification of tree 
types. Furthermore, these convenient classification models have not been previously used 
to classify invasive tree species in an ASNW. 

With appropriate digital software manipulation, we aimed to use a UAV with mul-
tispectral image sensors to phenotype the non-native tree species alongside a 17th to mid-
18th century ancient and semi-natural woodland (ASNW). Data analysis techniques will 
be investigated to (a) perform PCA classification on the multispectral images to derive an 
NDSI algorithm that allows determination of the non-native 20th-century species, and (b) 
to segment the discriminated invasive tree species by a k-means clustering method. The 
developed algorithm will allow both identification and quantification of the invasive tree 
species. The results will be corroborated with field study data obtained at ground level. 

2. Methodology and Apparatus 
2.1. Sampling Site 
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Priestclose Wood is a 193,500 m2 woodland close to the center of Prudhoe (Northum-
berland, UK) (Figure 1a), of which 152,600 m2 is categorized as an ancient and semi-natu-
ral and managed as a Local Nature Reserve by the Northumberland Wildlife Trust (NWT) 
[32]. The wood is predominantly a mixture of Pedunculate and Sessile oak (Quercus robur 
and Quercus petraea) and silver birch (Betula pendula). The southern boundary (Figure 1b) 
is a planted 20th-century design landscape added to the 17th mid-18th century ASNW 
[33]. In 2015, Northumberland County Council: Area Planning Committee considered the 
maintenance of this boundary as part of the planning application for a new housing estate 
(Cottier Grange). It was confirmed [34] that a sufficient buffer zone should be maintained 
between the new housing estate and the ASNW. 

 
(a) 

 
(b) 

Figure 1. (a) Location of Priestclose Wood, and (b) Software stitched image, in visible mode, of the investigated 20th-
century design landscape planted alongside an ancient and semi-natural woodland (i.e., Priestclose Wood). 

2.2. Unmanned Aerial Vehicle 
A multirotor UAV (DJI Phantom 4, supplied by Coptrz Ltd., Leeds, UK) was used 

with a multispectral camera. The multispectral image camera operates with a 5 camera-
array covering the blue (450 ± 16 nm), green (560 ± 16 nm), red (650 ± 16 nm), red edge 
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(730 ± 16 nm) and near-infrared (840 ± 26 nm) spectra with an additional camera that can 
also provide live images in RGB (visible) mode as well as in normalized difference vege-
tation index (NDVI) mode. All cameras were stabilized with a 3-axis gimbal. In all cases, 
the camera was angled perpendicular to the ground, with data capture occurring in hover 
and capture mode. Images were captured as 16-bit TIF files corrected for ambient radiance 
values. The UAV speed was 5.0 m/s and had an average height of 100 m. All flights were 
recorded with a resolution of 5.3 cm/px, a front overlap ratio of 75%, a side overlap ratio 
of 60% and a course angle of 90°. Specific weather conditions relating to daytime temper-
ature during flight, wind speed and direction (recorded using a handheld anemometer 
(Benetech® GM816, Amazon UK)), and UAV pilot anecdotal observations on cloud cover-
age are identified with specific dated data. 

2.3. UAV Data Analysis: Photogrammetric Processing 
From the images taken by the multispectral UAV, an orthomosaic image was pro-

duced using Agisoft Metashape Professional (64 bit) software v.1.7.1 (Agisoft LLC, St. Pe-
tersburg, Russia). Photogrammetric processing using Agisoft was performed as follows. 
Initially, the individual images were selected as a group and aligned to generate a sparse 
point cloud where photographs were matched according to similar features. Afterwards, 
a dense 3D point cloud was built based on the estimated photograph positioning, where 
the software calculates the depth information of each photograph and then combines it 
into a single dense point cloud. The dense point cloud was then used to build a mesh 
model that defines the combined image's vertices. Finally, the above steps had to be com-
pleted for the software to automatically build an orthomosaic aerial image free of camera 
lens-related distortion. The x y coordinates system assigned to build the orthomosaic was 
set to the WGS 1984 Web Mercator. This software provides an automated image pro-
cessing sequence to align multiple individual images that can be stitched together to build 
an orthomosaic image, which we term as the aerial image (Figure 1). 

2.4. Field Data Analysis 
Tree identification, and its mapping with a handheld GPS (Garmin Oregon 600), was 

done at ground level on the 13 March 2021. Visual identification was done by observation 
of tree bark, canopy shape and the leaf buds. The main tree types identified were black 
pine, Norway maple, oak, Scots pine, silver birch and sycamore. The site was surveyed, 
by foot, by an independent tree surveyor and accompanied by a recorder. The GPS coor-
dinates of the identified trees in the field study were allocated on the orthomosaic image 
(Figure 1). The software to input x,y coordinates for each location of tree was done using 
ArcGIS Pro v.2.8.0 (Esri Inc., West Redlands, CA, USA). 

2.5. Image Processing and Data Analysis 
Further image processing and implementation of algorithms, such as, PCA and veg-

etation indices (VI) and image segmentation by k-means on the multispectral UAV images 
were performed using MATLAB v.R2020b (MathsWorks Inc., Natick, MA, USA) a pro-
gramming language software. The workflow of processing data is summarized in Figure 
2. The first step involves the visual interpretation of the RGB images and the selection of 
the image dataset. Afterwards, PCA was performed on the selected multispectral image 
dataset using the MATLAB programming software. The PCA result was used to derive a 
suitable spectral index to classify the tree species. This was done using the eigenvectors in 
each spectral band from the first three PCs, as it retained more than 80% of the information 
for the classification of the tree species. The new spectral index was applied to the whole 
dataset. Then, the image from the dataset was stitched to an orthomosaic image. Finally, 
k-means segmentation was performed, allowing further refinement of the spectral index 
leading to quantitation of tree species types. 
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Figure 2. Workflow of the data processing required to investigate the ASNW. 

2.6. Principal Component Analysis Applied to Obtained Data 
From the image data set of the woodland boundary, RGB (visible) images were used 

to display the different tree species (Figure 3). Visual observation of the images from the 
data set was crucial as all the images from the data set do not contain all the non-native 
tree species. Afterwards, multispectral image data sets representing the native tree species 
(Figure 4a) were selected. The multispectral images were red, green, blue, red edge and 
NIR were analyzed using MATLAB to generate the PCA. This data interrogation gener-
ated the eigenvectors and % variance (Table 1) representing the features extracted from 
the multispectral image data set. The % variance obtained for the first three principal com-
ponents (PCs) was 86.806 (Table 1a), which retains the most important information that 
can be used for effective data analysis. Hence, the PCA results obtained using the multi-
spectral image data set (Figure 4a) were used to build a new spectral index to extract fea-
tures to discriminate the pine, Norway maple and sycamore trees. The new spectral index 
was calculated using the pixel values from the PC as follows: 

Normalized Difference Spectral Index (NDSI) = (x1 − x2)/(x1 + x2) (1) 
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Figure 3. RGB (visible) image from the data set of the ASNW to classify the tree types: black pine, 
Norway maple, Scots pine and sycamore. 

 
(a) 

 

(b) 

Figure 4. Multispectral image datasets used to perform PCA for (a) pine trees (Scots and black), Norway maple and syca-
more trees (b) Scots Pine trees only. [1 = Blue, 2 = Green, 3 = Red, 4 = Red Edge and 5 = NIR]. 

Table 1. Percentage Variance of PC1 to PC5 resulting from PCA applied to multispectral images to 
classify (a) maple, pine (Black and Scots) and sycamore trees and (b) Scots pine trees. 

(a) 
 PC1 PC2 PC3 PC4 PC5 

% variance  47.435 26.570 12.801 8.599 4.595 
% cumulative 47.435 74.005 86.806 95.405 100.000 
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(b) 
% variance  56.222 21.738 9.592 7.540 4.908 

% cumulative 56.222 77.960 87.552 95.092 100.000 

This NDSI can be used to differentiate scene elements and enhance spectral features 
that are not visible. In addition, PCA can allow a selection of multiple spectral bands, 
thereby providing the option to select or eliminate desired spectral bands. Using this ap-
proach, appropriate PCs with their eigenvectors were used to derive a new NDSI to dif-
ferentiate the non-native tree species (Figure 5a). Eigenvectors indicate the proportion that 
each input spectral band contributes to each PC. Figure 5a shows the eigenvector values 
for each multispectral band in PC1 and PC2 for the multispectral image data set in Figure 
4a. According to Figure 5a, PC1 (i.e., blue and NIR spectral bands only) indicate positive 
eigenvector values while PC2 (i.e., blue, green, red and NIR spectral bands) indicate pos-
itive eigenvector values. By combining the information of the eigenvectors from these in-
dividual spectral bands would be useful at extracting meaningful features for differenti-
ating tree species, i.e., pine, Norway maple and sycamore trees, by the newly derived 
NDSI: 

NDSI = (PC1)/(PC2 + PC2 + PC1) (2) 

 

 
(a) 

 
(b) 



Separations 2021, 8, 160 9 of 15 
 

 

Figure 5. The eigenvectors of each spectral band contributing to form each PC image for (a) pine 
(Scots and Black) trees, Norway maple and sycamore trees (b) Scots pine trees only.[1 = Blue, 2 = 
Green, 3 = Red, 4 = Red Edge and 5 = NIR]. 

Unfortunately, the new NDSI was insufficient to classify Scots and black pine as two 
separate trees. Therefore, an RGB image and the multispectral data set (Figure 4b) was 
selected to perform PCA to classify the pine trees. The % variance obtained was 87.552 
(Table 1b) for the first three PCs. Figure 5b shows the eigenvector values for each multi-
spectral band in PC1, PC2, and PC3 generated after performing PCA for the multispectral 
image data set (Figure 4b). Figure 5b shows that PC1 (i.e., green, red and NIR spectral 
bands only) indicates positive eigenvector values. While PC2 (i.e., green, red edge and 
NIR spectral bands) indicate positive eigenvector values, PC3 (i.e., the NIR spectral band) 
indicates a positive eigenvector value. Combining the information from the eigenvector 
values for the spectral bands in PC1, PC2, and PC3 enables discrimination of the Scots 
pine trees. Therefore, a new spectral index using the eigenvectors from the first three PC 
score images were combined to extract features enabling classification of the Scots pine 
trees. 

Spectral Index = (PC1 + PC2 + PC3) (3) 

The new indices were then applied on the 20th century woodland boundary data in 
preparation for further analysis.  

2.7. K-Means Segmentation and Quantification of Invasive Tree Species 
Image segmentation translates an image into a group of pixels represented by a la-

belled image or a mask [35]. It can be used for segmentation of the UAV images into group 
non-native and native trees. Hence, k-means segmentation was performed on the dataset 
classified by the new spectral index. It was used to segment different non-native tree spe-
cies from the background vegetation into different clusters by assigning a separate pixel 
value for each cluster in the image. The clusters were obtained by observing the similarity 
in the data, or phenotyping, represented by the assigned k-number of clusters. This ap-
proach then calculated and placed centroids according to the k-number of the clusters. 
The algorithm then calculated the Euclidean distance for each pixel with respect to the 
centroid. This approach classifies each pixel based on its closest distance according to the 
similarity threshold and assists in grouping similar pixel values into different clusters, 
which then can be quantified to identify the area of each non-native tree species. The total 
pixel count of each respective area was then multiplied by the resolution of the captured 
drone images (0.053 m/pixel * 0.053 m/pixel) and values determined for both the total 
woodland investigated as well as for the individual tree species. 

3. Results and Discussion 
3.1. Evaluating the Performance of PCA and K-Means Segmentation in Classifying Non-Native 
Tree Species 

The PCA results were used to derive an NDSI using the eigenvectors in PC1 and PC2 
(Figure 5a), which showed a pronounced spectral response in the green, red, red edge, 
and NIR spectral bands between PC1 and PC2. The response in these spectral bands en-
hanced the spectral features enabling identification of pine (Scots and black), Norway ma-
ple and sycamore trees using the newly derived NDSI algorithm (Figure 6b). Specifically, 
the PCA derived NDSI algorithm allows the different tree species to be clustered into 
groups (Figure 6b). Figure 6b identifies different tree species by using a greyscale. How-
ever, the identified clusters need to be refined by an additional classification method. This 
is because the NDSI algorithm on its own is insufficient to classify the tree species accu-
rately. Therefore, the clusters can further be classified by a segmentation method, either 
thresholding or k-means clustering. Thresholding converts a greyscale image into a binary 
image by assigning the pixels a threshold value between 0 to 1, which segments an image's 
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light and dark regions. Image segmentation by thresholding is efficient when only a few 
tree species are present. As thresholding only considers the intensity and neglects the re-
lationship between pixels, it is more error-prone at segmenting many trees as the pixels 
for the desired region of a specific tree might be included or excluded. This effect is evi-
denced in Figure 6a, which shows Norway maple trees in white regions. This implies that 
they occupy a larger area in the woodland than in reality. The different intensities of the 
regions are difficult to distinguish as some appear to have a similar intensity level which 
allows them to be misclassified by the threshold segmentation approach. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 6. PCA and k-means segmented images for classifying pine (Scots and Black), Norway maple 
and sycamore trees (a) threshold segmentation representing Norway maple trees from PCA derived 
NDSI, (b) PCA derived NDSI = (PC1)/(PC2 + PC2 + PC1), (c) k-means segmented image from PCA 
derived NDSI, (d) k-means cluster representing the Norway maple trees, and (e) k-means 
segmented image directly on RGB image. 

Due to this outcome, k-means segmentation was applied to the PCA-derived NDSI 
image. K-means clustering is an unsupervised machine learning algorithm that segments 
different groups of samples (e.g., tree species) from the background into clusters that are 
represented by a similar pixel value. The clusters are obtained by observing the similarity 
in the data represented by the assigned k-number of clusters and calculating and placing 
centroids according to the k-number of clusters. Afterward, the Euclidean distance for 
each pixel is calculated relative to the centroid, which classifies the pixel into groups based 
on the distance. The longer the distance between pixels the smaller the similarly and 
chances of pixels being in separate groups. The closer the distance between the pixels, the 
greater the similarity of them clustered as one group. In addition, the use of k-mean seg-
mentation compared to thresholding proves to be an effective and simpler classification 
method. The k-means segmentation method considers pixel values instead of intensity 
values, reducing the chance of tree species misclassification. Hence, the NDSI derived 
PCA (Figure 6b) was used for the k-means segmentation. The k-number of clusters as-
signed was six, which allowed segmentation of the different clusters of non-native tree 
species into pine (Scots and black), Norway maple, and sycamore (Figure 6c). The mustard 
green-colored areas represented the pine (Scot and black) trees as one cluster, and the 
brown-colored areas representing the sycamore trees as the second cluster (Figure 6c). The 
third clusters were regions with light blue, pinkish-red, and dark blue-colored areas in the 
center representing the Norway maple trees (Figure 6c). The final cluster at the bottom of 
the image, with a different shade of blue coloration, was identified to be a mixture of oak 
and silver birch trees (Figure 6c). However, due to indistinct phenology in these tree spe-
cies, they were not identified as separate tree species by any spectral index even after mul-
tiple interpretations. The effectiveness of k-means segmentation is shown in (Figure 6d) 
which segments the Norway maple trees more precisely than threshold segmentation 
(Figure 6a). 

Furthermore, the effectiveness of multispectral imaging and deriving an NDSI algo-
rithm prior to k-means segmentation is shown in Figure 6e, where k-means segmentation 
is performed on the RGB image directly without PCA. The image (Figure 6e) shows a very 
poor segmentation of non-native tree species. However, the current NDSI classified the 
two types of pine trees (Scots and black) as one tree type. Hence, a re-consideration of the 
eigenvectors from the first three PC score images was required. These three PC score im-
ages corresponded to a combined eigenvector value of 87.56% (Table 1b). This revised 
approach allowed the classification of the Scots pine trees (Figure 7a). This newly derived 
spectral index (Figure 7a) was segmented by k-means clustering, where the k-number of 
clusters for the image was 4. These clusters, illustrated by the sky-blue colored regions, 
located in a single row correspond to the Scots pine trees (Figure 7b). Finally, the results 
obtained by k-means segmentation correlated well with the non-native tree species loca-
tions compared with the data obtained from the field study (Figure 8). 
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Figure 7. PCA and k-means segmented images for classifying Scots pine (a) PCA derived (PC1 + 
PC2 + PC3) colourmap image, and (b) k-means segmented image. 

 
Figure 8. GPS coordinates for the tree species in the woodland boundary. 

3.2. Quantitative Information Obtained by Analysis of UAV MSI and Field Study Data 
The non-native tree clusters of black pine, Scots pine, Norway maple, and sycamore 

trees obtained from the k-means segmentation images (Figures 6a and 7b) were quanti-
fied. The average results of the quantitative results (n = 2) using UAV MSI identified 19% 
Norway maple trees, 12% Scots pine trees, 23% black pine trees, and 19% of sycamore 
trees (Table 2). The UAV data was captured within 22 min of flight time, over an area of 
8052 m2. In contrast, the detailed ground-level field study was undertaken over 4 h, for an 
area of 6785 m2, which resulted in the manual counting, identification, and GPS mapping 
of 30% Norway maple trees, 10% Scots pine trees, 26% black pine trees, and 14% sycamore 
trees (Table 2). When considering how it was captured, an agreement can be observed 
between the two sets of differently obtained data. The UAV MSI data is phenotyping tree 
type from the canopy based on its shape and coloration, whereas the field study data is 
counting (and identifying tree species) based on ground-level observations. No attempt 
was made to reconcile the data based on tree trunk versus tree canopy scaling. Further-
more, other trees were identified, specifically oak and silver birch located at the bottom 
edge of the 20th-century design landscape woodland by UAV MSI (27%) and field study 
(20%). 
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Table 2. Quantitative information obtained by analysis of UAV MSI and field study data. 

UAV 
Flight # 

From Analyzed UAV Data Field Study Data @ 

Total 
Woodland 
Area (m2) 

Area of 
Norway 
Maple 

Coverage 
(m2) 

Area of 
Scots Pine 
Coverage 

(m2) 

Area of 
Black 
Pine 

Coverage 
(m2) 

Area of 
Sycamore 
Coverage 

(m2) 

% 
Norway 
Maple 
Trees 

% Scots 
Pine 
Trees 

% Black 
Pine 
Trees 

% 
Sycamore 

Trees 

% Other 
Trees 

(Oak and 
Silver 
Birch) 

% 
Norway 
Maple 
Trees 

% Scots 
Pine 
Trees 

% Black 
Pine 
Trees 

% 
Sycamore 

Trees 

% Other 
Trees 

(Oak and 
Silver 
Birch) 

Value * 8052 1565 934 1805 1493 19 12 23 19 27 30 10 26 14 20 

Range & 7866–8239 1485–1644 903–964 
1794–
1817 1453–1533 NA NA 

# UAV flights: 14 October 2020 and 19 October 2020. * Value based on n = 2 determinations for the tree area. & Range of values, based on individual analysis. @ Field data collected on 13 
March 2021 over an area of 6785 m2. NA = not applicable. 
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4. Conclusions 
This study has demonstrated a simple approach to classifying multiple non-native 

tree species with some additional benefits. The results have demonstrated the benefits of 
using PCA in the classification process. The use of PCA allows selecting the most appro-
priate spectral bands to classify tree species into clusters using the newly derived spectral 
index. Currently available spectral indices, such as NDVI have limited use. Therefore, 
building up new spectral indices for a specified purpose is a novel and simple approach 
that has proven to provide promising results for tree species classification in an ASNW. 
Furthermore, k-means segmentation has been identified as the optimum segmentation 
method in this approach for identifying multiple trees. K-means allows further refinement 
of the spectral index leading to quantitation of tree species types. The accuracy of this 
simple approach was confirmed with data obtained from a ground-level field study. 

Current methods for classifying tree species use object-based classification methods 
that require extensive and time-consuming machine learning and deep learning methods 
to build up classification models. However, the current approach is a pixel-based ap-
proach that allows the selection of spectral bands to derive spectral indices suitable for 
tree species classification. When combined with the k-means segmentation approach, it 
provides a powerful tool for identifying different tree clusters. In addition, our approach 
does not require a training data set, which makes it easy to apply, flexible in application 
and ultimately less time-consuming. 
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