14 research outputs found

    The importance of market signals in crop varietal development: Lessons from Komboka rice variety

    Get PDF
    Growing high-yielding varieties is crucial for successful crop production and maximizing farmers’ net returns. One such example is IR05N221, locally referred to as Komboka rice variety, which was released in Kenya in 2013. On the one hand, Komboka can bridge the gap in rice imports since yields of existing rice varieties do not meet the increasing rice consumption levels of the Kenyan population. On the other hand, it has taken about seven years for Komboka to be appreciated by farmers, necessitating the need to understand farmer preferences when it comes to adopting a new improved variety. We used a mixed-method study approach by combining quantitative and qualitative data collected regionally and locally in both rainfed and irrigated ecologies. When compared to most of the other rice varieties under evaluation, Komboka was high-yielding, early-maturing, and had moderate tolerance to diseases in both rainfed and irrigated ecologies. However, farmers at the regional level ranked Komboka either at the same or lower rank in terms of sensory attributes. At the local level, farmers predominantly grew older and more aromatic Basmati 370 rice variety for sale, as it fetched them more money, with preferences for both men and women rice farmers being the same. Despite Komboka being a high-yielding variety, Mwea rice farmers’ perceptions and preferences for this improved variety were low. While Komboka was equally aromatic, the lack of a ready market dissuaded these farmers from widely preferring the new Komboka variety. We provide prerequisite information that can support the commercialization and promotion of the Komboka variety. We also show that widespread favourable perception of new varieties hinges on matching preferences between breeders’ efforts for improved rice productivity with farmers’ needs for market competitiveness in these new varieties

    Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize

    Get PDF
    Maize, a staple food in many African countries including Kenya, is often contaminated by toxic and carcinogenic fungal secondary metabolites such as aflatoxins and fumonisins. This study evaluated the potential use of a low-cost, multi-spectral sorter in identification and removal of aflatoxin- and fumonisin-contaminated single kernels from a bulk of mature maize kernels. The machine was calibrated by building a mathematical model relating reflectance at nine distinct wavelengths (470–1550\ua0nm) to mycotoxin levels of single kernels collected from small-scale maize traders in open-air markets and from inoculated maize field trials in Eastern Kenya. Due to the expected skewed distribution of mycotoxin contamination, visual assessment of putative risk factors such as discoloration, moldiness, breakage, and fluorescence under ultra-violet light (365\ua0nm), was used to enrich for mycotoxin-positive kernels used for calibration. Discriminant analysis calibration using both infrared and visible spectra achieved 77% sensitivity and 83% specificity to identify kernels with aflatoxin >10\ua0ng\ua0g and fumonisin >1000\ua0ng\ua0g, respectively (measured by ELISA or UHPLC). In subsequent sorting of 46 market maize samples previously tested for mycotoxins, 0–25% of sample mass was rejected from samples that previously tested toxin-positive and 0–1% was rejected for previously toxin-negative samples. In most cases where mycotoxins were detected in sorted maize streams, accepted maize had lower mycotoxin levels than the rejected maize (21/25 accepted maize streams had lower aflatoxin than rejected streams, 25/27 accepted maize streams had lower fumonisin than rejected streams). Reduction was statistically significant (p\ua

    Enhancing Food Safety through Adoption of Long-Term Technical Advisory, Financial, and Storage Support Services in Maize Growing Areas of East Africa

    No full text
    Grain production and storage are major components in food security. In the ancient times, food security was achieved through gathering of fruits, grains, herbs, tubers, and roots from the forests by individual households. Advancements in human civilization led to domestication of crops and a need to save food for not only a household, but the nation. This extended need for food security led to establishment of national reservoirs for major produces and this practice varies greatly in different states. Each of the applied food production, handling, and storage approaches has its benefits and challenges. In sub-Saharan Africa, several countries have a public funded budget to subsidize production costs, to buy grains from farmers, and to store the produce for a specific period and/or until the next harvests. During the times of famine, the stored grains are later sold at subsidized prices or are given for free to the starving citizens. If there is no famine, the grain is sold to retailers and/or processors (e.g., millers) who later sell it to the consumers. This approach works well if the produce (mainly grain) is stored under conditions that do not favor growth of molds, as some of these microbes could contaminate the grain with toxic and carcinogenic metabolites called mycotoxins. Conditions that alleviate contamination of grains are required during production, handling, and storage. Most of the grain is produced by smallholder farmers under sub-optimal conditions, making it vulnerable to colonization and contamination by toxigenic fungi. Further, the grain is stored in silos at large masses, where it is hard to monitor the conditions at different points of these facilities, and hence, it becomes vulnerable to additional contamination. Production and storage of grain under conditions that favor mycotoxins poses major food health and safety risks to humans and livestock who consume it. This concept paper focuses on how establishment of a local grain production and banking system (LGPBS) could enhance food security and safety in East Africa. The concept of LGPBS provides an extension of advisory and finance support within warehouse receipt system to enhance grain production under optimal conditions. The major practices at the LGPBS and how each could contribute to food security and safety are discussed. While the concept paper gives more strength on maize production and safety, similar practices could be applied to enhance safety of other grains in the same LGPBS

    Association between agronomic traits and aflatoxin accumulation in diverse maize lines grown under two soil nitrogen levels in Eastern Kenya

    No full text
    Aflatoxin accumulation in maize is strongly influenced by the environment in which the crop is grown. To gain insights into the ways in which soil fertility influences aflatoxin, we investigated the relationships between agronomic traits and aflatoxin in diverse maize testcrosses that were grown under two nitrogen treatment levels. The experiment was conducted in Eastern Kenya, an aflatoxin-endemic area, with natural Aspergillus flavus inoculum. A panel of 205 maize lines was grown under low soil nitrogen (Nlow = 26 kg/ha applied N) in the long season of 2011 and a subset of the genotypes (n = 123) was grown under high soil nitrogen (Nhigh = 114 kg/ha applied N) in the short season of 2010 and long season of 2011. Kernel traits, grain yield, days to anthesis, ear rot, and aflatoxin were analyzed for the panel. Grain yield, protein, and kernel bulk density were higher in maize grown under Nhigh compared to maize grown under Nlow, with grain yield twice as high under Nhigh. A higher proportion of plots had grain with detectable aflatoxin under Nlow than under the Nhigh. When the maize testcrosses were grouped into three maturity categories based on days to anthesis, aflatoxin accumulation was twice as high in the late-maturing group than in the other two categories under Nlow. The proportion of aflatoxin contamination was higher in dent than in flint maize. However, the extent of aflatoxin accumulation did not differ significantly (P > 0.05) over the entire testcross panel, among maize genotypes within the maturity groups or among kernel texture groups within the maturity groups. Kernel bulk density and protein content were higher in early and intermediate groups than in the late maturity group. Grain yield did not differ among the maturity groups (P > 0.05), but significant positive correlations were observed between the proportion of grain yield reduction due to low soil nitrogen stress and aflatoxin in early and late maturity groups. Kernel bulk density was negatively correlated with aflatoxin in grain. No significant association was observed between aflatoxin and ear rot or kernel size. We conclude that aflatoxin mitigation strategies should include soil nitrogen amendment and breeding approaches that include selection for the correlated agronomic traits

    Multi-spectral kernel sorting to reduce aflatoxins and fumonisins in Kenyan maize

    No full text
    Maize, a staple food in many African countries including Kenya, is often contaminated by toxic and carcinogenic fungal secondary metabolites such as aflatoxins and fumonisins. This study evaluated the potential use of a low-cost, multi-spectral sorter in identification and removal of aflatoxin- and fumonisin-contaminated single kernels from a bulk of mature maize kernels. The machine was calibrated by building a mathematical model relating reflectance at nine distinct wavelengths (470–1550 nm) to mycotoxin levels of single kernels collected from small-scale maize traders in open-air markets and from inoculated maize field trials in Eastern Kenya. Due to the expected skewed distribution of mycotoxin contamination, visual assessment of putative risk factors such as discoloration, moldiness, breakage, and fluorescence under ultra-violet light (365 nm), was used to enrich for mycotoxin-positive kernels used for calibration. Discriminant analysis calibration using both infrared and visible spectra achieved 77% sensitivity and 83% specificity to identify kernels with aflatoxin >10 ng g−1 and fumonisin >1000 ng g−1, respectively (measured by ELISA or UHPLC). In subsequent sorting of 46 market maize samples previously tested for mycotoxins, 0–25% of sample mass was rejected from samples that previously tested toxin-positive and 0–1% was rejected for previously toxin-negative samples. In most cases where mycotoxins were detected in sorted maize streams, accepted maize had lower mycotoxin levels than the rejected maize (21/25 accepted maize streams had lower aflatoxin than rejected streams, 25/27 accepted maize streams had lower fumonisin than rejected streams). Reduction was statistically significant (p < 0.001), achieving an 83% mean reduction in each toxin. With further development, this technology could be used to sort maize at local hammer mills to reduce human mycotoxin exposure in Kenya, and elsewhere in the world, while at once reducing food loss, and improving food safety and nutritional status

    Foliar diseases and the associated fungi in rice cultivated in Kenya

    No full text
    We conducted a survey to assess the occurrence and severity of rice blast and brown spot diseases on popular cultivars grown in the Busia, Kirinyaga, and Kisumu counties of Kenya in 2019. Working with agricultural extension workers within rice production areas, we interviewed farmers (n = 89) regarding their preferred cultivars and their awareness of blast disease, as this was the major focus of our research. We scored the symptoms of blast and brown spot and assessed the lodging, plant height, and maturity of the crops (days after planting). Furthermore, we collected leaf and neck tissues for the assessment of the prevailing fungal populations. We used specific DNA primers to screen for the prevalence of the causal pathogens of blast, Magnaporthe oryzae, and brown spot, Cochliobolus miyabeanus, on asymptomatic and symptomatic leaf samples. We also conducted fungal isolations and PCR-sequencing to identify the fungal species in these tissues. Busia and Kisumu had a higher diversity of cultivars compared to Kirinyaga. The aromatic Pishori (NIBAM 11) was preferred and widely grown for commercial purposes in Kirinyaga, where 86% of Kenyan rice is produced. NIBAM108 (IR2793-80-1) and BW196 (NIBAM 109) were moderately resistant to blast, while NIBAM110 (ITA310) and Vietnam were susceptible. All the cultivars were susceptible to brown spot except for KEH10005 (Arize Tej Gold), a commercial hybrid cultivar. We also identified diverse pathogenic and non-pathogenic fungi, with a high incidence of Nigrospora oryzae, in the rice fields of Kirinyaga. There was a marginal correlation between disease severity/incidence and the occurrence of causal pathogens. This study provides evidence of the need to strengthen pathogen surveillance through retraining agricultural extension agents and to breed for blast and brown spot resistance in popular rice cultivars in Kenya
    corecore