7 research outputs found

    Fabrication and characterization of Eri silk fibers-based sponges for biomedical application

    Get PDF
    Cocoon-derived semi-domesticated Eri silk fibers still lack exploitation for tissue engineering applications due to their poor solubility using conventional methods. The present work explores the ability to process cocoon fibers of non-mulberry Eri silk (Samia/Philosamia ricini) into sponges through a green approach using ionic liquid (IL) â 1-buthyl-imidazolium acetate as a solvent. The formation of β-sheet structures during Eri silk/IL gelation was acquired by exposing the Eri silk/IL gels to a saturated atmosphere composed of two different solvents: (i) isopropanol/ethanol (physical stabilization) and (ii) genipin, a natural crosslinker, dissolved in ethanol (chemical crosslinking). The sponges were then obtained by freeze-drying. This approach promotes the formation of both stable and ordered non-crosslinked Eri silk fibroin matrices. Moreover, genipin-crosslinked silk fibroin sponges presenting high height recovery capacity after compression, high swelling degree and suitable mechanical properties for tissue engineering applications were produced. The incorporation of a model drug â ibuprofen â and the corresponding release study from the loaded sponges demonstrated the potential of using these matrices as effective drug delivery systems. The assessment of the biological performance of ATDC5 chondrocyte-like cells in contact with the developed sponges showed the promotion of cell adhesion and proliferation, as well as extracellular matrix production within two weeks of culture. Spongesâ intrinsic properties and biological findings open up their potential use for biomedical applications.The authors SSS, DSC, MBO, NMO acknowledge financial support from Portuguese Foundation for Science and Technology – FCT (Grants SFRH/BPD/45307/2008, SFRH/BPD/85790/2012, SFRH/BD/71396/2010 and SFRH/BD/73172/2010, respectively), ‘‘Fundo Social Europeu” – FSE, and ‘‘Programa Diferencial de Potencial Humano POPH”. This work is also financially supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n REGPOT-CT2012-316331-POLARIS and from Fundação para a Ciência e Tecnologia (FCT) through the project ENIGMA – PTDC/EQU-EPR/121491/2010. The laboratory work of SCK is supported by Department of Biotechnology and Indian Council of Medical Research, Govt of India. SCK and RLR acknowledge their short visits either Institutes. SCK is also grateful to 3B´ s Research Group- Biomaterials, Biodegradables and Biomimetics, University of Minho, Portugal for providing facilities during his short visit

    Ultraviolet protection property of mulberry fruit extract on cotton fabrics

    No full text
    420-423Anthocyanin extracted from mulberry fruit has been applied onto the cotton fabric for protection against ultraviolet radiation. The amount of anthocyanin present in the mulberry extracts has been evaluated by pH differential method. The effect of anthocyanin concentration and its <i style="mso-bidi-font-style: normal">pH on the ultraviolet protection factor (UPF) of the fabric is studied. The study shows that higher concentration of anthocyanin at acidic pH yields higher UPF to the fabric than lower concentration. It is also found that there is no difference in UPF between the fabrics treated with crude mulberry fruit extract and the fabric treated with anthocyanin extracted from the mulberry fruit
    corecore