2,090 research outputs found
Quasiparticles as composite objects in the RVB superconductor
We study the nature of the superconducting state, the origin of d-wave
pairing, and elementary excitations of a resonating valence bond (RVB)
superconductor. We show that the phase string formulation of the t-J model
leads to confinement of bare spinon and holon excitations in the
superconducting state, though the vacuum is described by the RVB state. Nodal
quasiparticles are obtained as composite excitations of spinon and holon
excitations. The d-wave pairing symmetry is shown to arise from short range
antiferromagnetic correlations
Anomalous Dynamics of Translocation
We study the dynamics of the passage of a polymer through a membrane pore
(translocation), focusing on the scaling properties with the number of monomers
. The natural coordinate for translocation is the number of monomers on one
side of the hole at a given time. Commonly used models which assume Brownian
dynamics for this variable predict a mean (unforced) passage time  that
scales as , even in the presence of an entropic barrier. However, the time
it takes for a free polymer to diffuse a distance of the order of its radius by
Rouse dynamics scales with an exponent larger than 2, and this should provide a
lower bound to the translocation time. To resolve this discrepancy, we perform
numerical simulations with Rouse dynamics for both phantom (in space dimensions
 and 2), and self-avoiding (in ) chains. The results indicate that
for large , translocation times scale in the same manner as diffusion times,
but with a larger prefactor that depends on the size of the hole. Such scaling
implies anomalous dynamics for the translocation process. In particular, the
fluctuations in the monomer number at the hole are predicted to be
non-diffusive at short times, while the average pulling velocity of the polymer
in the presence of a chemical potential difference is predicted to depend on
.Comment: 9 pages, 9 figures. Submitted to Physical Review 
Berry's phase in noncommutative spaces
We introduce the perturbative aspects of noncommutative quantum mechanics.
Then we study the Berry's phase in the framework of noncommutative quantum
mechanics. The results show deviations from the usual quantum mechanics which
depend on the parameter of space/space noncommtativity.Comment: 7 pages, no figur
Anomalous Dynamics of Forced Translocation
We consider the passage of long polymers of length N through a hole in a
membrane. If the process is slow, it is in principle possible to focus on the
dynamics of the number of monomers s on one side of the membrane, assuming that
the two segments are in equilibrium. The dynamics of s(t) in such a limit would
be diffusive, with a mean translocation time scaling as N^2 in the absence of a
force, and proportional to N when a force is applied. We demonstrate that the
assumption of equilibrium must break down for sufficiently long polymers (more
easily when forced), and provide lower bounds for the translocation time by
comparison to unimpeded motion of the polymer. These lower bounds exceed the
time scales calculated on the basis of equilibrium, and point to anomalous
(sub-diffusive) character of translocation dynamics. This is explicitly
verified by numerical simulations of the unforced translocation of a
self-avoiding polymer. Forced translocation times are shown to strongly depend
on the method by which the force is applied. In particular, pulling the polymer
by the end leads to much longer times than when a chemical potential difference
is applied across the membrane. The bounds in these cases grow as N^2 and
N^{1+\nu}, respectively, where \nu is the exponent that relates the scaling of
the radius of gyration to N. Our simulations demonstrate that the actual
translocation times scale in the same manner as the bounds, although influenced
by strong finite size effects which persist even for the longest polymers that
we considered (N=512).Comment: 13 pages, RevTeX4, 16 eps figure
An overview of the ciao multiparadigm language and program development environment and its design philosophy
We describe some of the novel aspects and motivations behind
the design and implementation of the Ciao multiparadigm programming system. An important aspect of Ciao is that it provides the programmer with a large number of useful features from different programming paradigms and styles, and that the use of each of these features can be turned on and off at will for each program module. Thus, a given module may be using e.g. higher order functions and constraints, while another module may be using objects, predicates, and concurrency. Furthermore, the language is designed to be extensible in a simple and modular way. Another important aspect of Ciao is its programming environment, which provides a powerful preprocessor (with an associated assertion language) capable of statically finding non-trivial bugs, verifying that programs comply with specifications, and performing many types of program optimizations. Such optimizations produce code that is highly competitive with other dynamic languages or, when the highest levéis of optimization are used, even that of static languages, all while retaining the interactive development environment of a dynamic language. The environment also includes a powerful auto-documenter. The paper provides an informal overview of the language and program development environment. It aims at illustrating the design philosophy rather than at being exhaustive, which would be impossible in the format of a paper, pointing instead to the existing literature on the system
Single Stranded DNA Translocation Through A Nanopore: A Master Equation Approach
We study voltage driven translocation of a single stranded (ss) DNA through a
membrane channel. Our model, based on a master equation (ME) approach,
investigates the probability density function (pdf) of the translocation times,
and shows that it can be either double or mono-peaked, depending on the system
parameters. We show that the most probable translocation time is proportional
to the polymer length, and inversely proportional to the first or second power
of the voltage, depending on the initial conditions. The model recovers
experimental observations on hetro-polymers when using their properties inside
the pore, such as stiffness and polymer-pore interaction.Comment: 7 pages submitted to PR
- …
