19 research outputs found

    A Critical Role of Zinc Importer AdcABC in Group A Streptococcus-Host Interactions During Infection and Its Implications for Vaccine Development

    No full text
    Bacterial pathogens must overcome host immune mechanisms to acquire micronutrients for successful replication and infection. Streptococcus pyogenes, also known as group A streptococcus (GAS), is a human pathogen that causes a variety of clinical manifestations, and disease prevention is hampered by lack of a human GAS vaccine. Herein, we report that the mammalian host recruits calprotectin (CP) to GAS infection sites and retards bacterial growth by zinc limitation. However, a GAS-encoded zinc importer and a nuanced zinc sensor aid bacterial defense against CP-mediated growth inhibition and contribute to GAS virulence. Immunization of mice with the extracellular component of the zinc importer confers protection against systemic GAS challenge. Together, we identified a key early stage host-GAS interaction and translated that knowledge into a novel vaccine strategy against GAS infection. Furthermore, we provided evidence that a similar struggle for zinc may occur during other streptococcal infections, which raises the possibility of a broad-spectrum prophylactic strategy against multiple streptococcal pathogens

    The leaderless communication peptide (LCP) class of quorum-sensing peptides is broadly distributed among Firmicutes

    No full text
    Abstract The human pathogen Streptococcus pyogenes secretes a short peptide (leaderless communication peptide, LCP) that mediates intercellular communication and controls bacterial virulence through interaction with its receptor, RopB. Here, we show that LCP and RopB homologues are present in other Firmicutes. We experimentally validate that LCPs with distinct peptide communication codes act as bacterial intercellular signals and regulate gene expression in Streptococcus salivarius, Streptococcus porcinus, Enterococcus malodoratus and Limosilactobacillus reuteri. Our results indicate that LCPs are more widespread than previously thought, and their characterization may uncover new signaling mechanisms and roles in coordinating diverse bacterial traits

    Distinct single amino acid replacements in the control of virulence regulator protein differentially impact streptococcal pathogenesis.

    Get PDF
    Sequencing of invasive strains of group A streptococci (GAS) has revealed a diverse array of single nucleotide polymorphisms in the gene encoding the control of virulence regulator (CovR) protein. However, there is limited information regarding the molecular mechanisms by which CovR single amino acid replacements impact GAS pathogenesis. The crystal structure of the CovR C-terminal DNA-binding domain was determined to 1.50 Å resolution and revealed a three-stranded β-sheet followed by a winged helix-turn-helix DNA binding motif. Modeling of the CovR protein-DNA complex indicated that CovR single amino acid replacements observed in clinical GAS isolates could directly alter protein-DNA interaction and impact protein structure. Isoallelic GAS strains that varied by a single amino acid replacement in the CovR DNA binding domain had significantly different transcriptomes compared to wild-type and to each other. Similarly, distinct recombinant CovR variants had differential binding affinity for DNA from the promoter regions of several virulence factor-encoding genes. Finally, mice that were challenged with GAS CovR isoallelic strains had significantly different survival times, which correlated with the transcriptome and protein-DNA binding studies. Taken together, these data provide structural and functional insights into the critical and distinct effects of variation in the CovR protein on GAS pathogenesis
    corecore