6 research outputs found

    Human T cell priming assay: depletion of peripheral blood lymphocytes in CD25(+) cells improves the in vitro detection of weak allergen-specific T cells

    No full text
    International audienceTo develop an in vitro assay that recapitulates the key event of allergic contact dermatitis (ACD), that is the priming of effector T cells by hapten-presenting dendritic cells, and then allows for the sensitive detection of chemical allergens represents a major challenge. Classical human T cell priming assays (hTCPA) that have been developed in the past, using hapten-loaded monocyte-derived dendritic cells (MDDCs) as antigen-presenting cells and peripheral blood lymphocytes (PBLs) as responding cells, were not efficient to prime T cells to common allergens with moderate/weak sensitizing properties. Recent progress in the understanding of the effector and regulatory mechanisms of ACD have shown that T cell priming requires efficient uptake of allergens by immunogenic DCs and that it is controlled by several subsets of regulatory cells including CD25(+) Tregs. We therefore analyzed various parameters involved in allergen-specific T cell activation in vitro and showed that priming of allergen-specific T cells is hampered by several subsets of immune cells comprising CD1a(neg) DCs, CD25(+) T cells, and CD56(+) regulatory cells.CD4(+)CD25(+)FoxP3(+) Tregs prevented the in vitro T cell priming to moderate/weak allergens, and depletion of human PBLs in CD25(+) cells significantly increased specific T cell proliferation and IFN-Îł secretion. CD56(+) cells exerted an additional control of T cell priming since co-depletion of both CD56(+) and CD25(+) cells improved the magnitude of chemical-specific T cell activation. Finally, CD1a(low) MDDCs were able to inhibit T cell activation obtained by allergen-pulsed CD1a(high) MDDC. Moreover, we showed that uptake by DC of allergen-encapsulated nanoparticles significantly increased their activation status and their ability to prompt specific T cell activation. Hence, by combining the different strategies, i.e., depletion of CD25(+) and CD56(+) cells, use of CD1a(high) MDDC, and nanoparticle encapsulation of allergens, it was possible to induce T cell priming to most of the moderate/weak allergens, including lipophilic molecules highly insoluble in culture media. Therefore, the present optimized in vitro human T cell priming assay is a valuable method to detect the sensitizing properties of chemical allergens

    Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy

    No full text
    International audienceHuman endogenous retroviruses (HERVs) represent 8% of the human genome. HERV products may represent tumor antigens relevant for cancer immunotherapy. We developed a bioinformatic approach to identify shared CD8 + T cell epitopes derived from cancer-associated HERVs in solid tumors. Six candidates among the most commonly shared HLA-A2 epitopes with evidence of translation were selected for immunological evaluation. In vitro priming assays confirmed the immunogenicity of these epitopes, which induced high-avidity CD8 + T cell clones. These T cells specifically recognize and kill HLA-A2 + tumor cells presenting HERV epitopes on HLA molecules, as demonstrated by mass spectrometry. Furthermore, epitope-specific CD8 + T cells were identified by dextramer staining among tumor-infiltrating lymphocytes from HLA-A2 + patients with breast cancer. Last, we showed that HERV-specific T cells lyse patient-derived organoids. These shared virus-like epitopes are of major interest for the development of cancer vaccines or T cell–based immunotherapies, especially in tumors with low/intermediate mutational burden

    HERVs characterize normal and leukemia stem cells and represent a source of shared epitopes for cancer immunotherapy

    No full text
    International audienceHuman endogenous retroviruses (HERVs) represent 8% of the human genome. The expression of HERVs and their immune impact have not been extensively studied in Acute Myeloid Leukemia (AML). In this study, we used a reference of 14 968 HERV functional units to provide a thorough analysis of HERV expression in normal and AML bone marrow cells. We show that the HERV retrotranscriptome accurately characterizes normal and leukemic cell subpopulations, including leukemia stem cells, in line with different epigenetic profiles. We then show that HERV expression delineates AML subtypes with different prognoses. We finally propose a method to select and prioritize CD8 + T cell epitopes derived from AML-specific HERVs and we show that lymphocytes infiltrating patient bone marrow at diagnosis contain naturall

    Massive clonal expansion of polycytotoxic skin and blood CD8+ T cells in patients with toxic epidermal necrolysis.

    No full text
    Toxic epidermal necrolysis (TEN) is a life-threatening cutaneous adverse drug reaction. To better understand why skin symptoms are so severe, we conducted a prospective immunophenotyping study on skin and blood. Mass cytometry results confirmed that effector memory polycytotoxic CD8+ T cells (CTLs) are the main leucocytes in TEN blisters at the acute phase. Deep T cell receptor (TCR) repertoire sequencing identified massive expansion of unique CDR3 clonotypes in blister cells. The same clones were highly expanded in patient's blood, and the degree of their expansion showed significant correlation with disease severity. By transducing α and ÎČ chains of the expanded clonotypes into a TCR-defective cell line, we confirmed that those cells were drug specific. Collectively, these results suggest that the relative clonal expansion and phenotype of skin-recruited CTLs condition the clinical presentation of cutaneous adverse drug reactions
    corecore