87 research outputs found

    Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.)

    Get PDF
    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT–PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain

    SHINE Transcription Factors Act Redundantly to Pattern the Archetypal Surface of Arabidopsis Flower Organs

    Get PDF
    Floral organs display tremendous variation in their exterior that is essential for organogenesis and the interaction with the environment. This diversity in surface characteristics is largely dependent on the composition and structure of their coating cuticular layer. To date, mechanisms of flower organ initiation and identity have been studied extensively, while little is known regarding the regulation of flower organs surface formation, cuticle composition, and its developmental significance. Using a synthetic microRNA approach to simultaneously silence the three SHINE (SHN) clade members, we revealed that these transcription factors act redundantly to shape the surface and morphology of Arabidopsis flowers. It appears that SHNs regulate floral organs' epidermal cell elongation and decoration with nanoridges, particularly in petals. Reduced activity of SHN transcription factors results in floral organs' fusion and earlier abscission that is accompanied by a decrease in cutin load and modified cell wall properties. SHN transcription factors possess target genes within four cutin- and suberin-associated protein families including, CYP86A cytochrome P450s, fatty acyl-CoA reductases, GSDL-motif lipases, and BODYGUARD1-like proteins. The results suggest that alongside controlling cuticular lipids metabolism, SHNs act to modify the epidermis cell wall through altering pectin metabolism and structural proteins. We also provide evidence that surface formation in petals and other floral organs during their growth and elongation or in abscission and dehiscence through SHNs is partially mediated by gibberellin and the DELLA signaling cascade. This study therefore demonstrates the need for a defined composition and structure of the cuticle and cell wall in order to form the archetypal features of floral organs surfaces and control their cell-to-cell separation processes. Furthermore, it will promote future investigation into the relation between the regulation of organ surface patterning and the broader control of flower development and biological functions

    Fruit regulates seasonal expression of flowering genes in alternate-bearing 'Moncada' mandarin

    Full text link
    Background and Aims The presence of fruit has been widely reported to act as an inhibitor of flowering in fruit trees. This study is an investigation into the effect of fruit load on flowering of `Moncada¿ mandarin and on the expression of putative orthologues of genes involved in flowering pathways to provide insight into the molecular mechanisms underlying alternate bearing in citrus. Methods The relationship between fruit load and flowering intensity was examined first. Defruiting experiments were further conducted to demonstrate the causal effect of fruit removal upon flowering. Finally, the activity of flowering-related genes was investigated to determine the extent to which their seasonal expression is affected by fruit yield. Key Results First observations and defruiting experiments indicated a significant inverse relationship between preceding fruit load and flowering intensity. Moreover, data indicated that when fruit remained on the tree from November onwards, a dramatic inhibition of flowering occurred the following spring. The study of the expression pattern of flowering-genes of on (fully loaded) and off (without fruits) trees revealed that homologues of FLOWERING LOCUS T (FT), SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), APETALA1 (AP1) and LEAFY (LFY) were negatively affected by fruit load. Thus, CiFT expression showed a progressive increase in leaves from off trees through the study period, the highest differences found from December onwards (10-fold). Whereas differences in the relative expression of SOC1 only reached significance from September to mid-December, CsAP1 expression was constantly higher in those trees through the whole study period. Significant variations in CsLFY expression only were found in late February (close to 20 %). On the other hand, the expression of the homologues of TERMINAL FLOWER 1 (TFL1) and FLOWERING LOCUS C (FLC) did not appear to be related to fruit load. Conclusions These results suggest for the first time that fruit inhibits flowering by repressing CiFT and SOC1 expression in leaves of alternate-bearing citrus. Fruit also reduces CsAP1 expression in leaves, and the significant increase in leaf CsLFY expression from off trees in late February was associated with the onset of floral differentiation.We thank Dr D. Westall for her help in editing the manuscript. M. C. Gonzalez was recipient of a contract by the Fundacion Agroalimed (Conselleria d'Agricultura, Pesca i Alimentacio, Generalitat Valenciana). This work was supported by a grant from the Instituto Nacional Investigaciones Agrarias, Spain (RTA2009-00147).Muñoz Fambuena, N.; Mesejo Conejos, C.; Gonzalez Más, MC.; Primo-Millo, E.; Agustí Fonfría, M.; Iglesias, DJ. (2011). Fruit regulates seasonal expression of flowering genes in alternate-bearing 'Moncada' mandarin. Annals of Botany. 108:511-519. doi:10.1093/aob/mcr164S51151910
    corecore