22 research outputs found

    Parapharyngeal space hemangiopericytoma treated with surgery and postoperative radiation- a case report

    Get PDF
    Hemangiopericytoma (HPC) is a rare tumor of uncertain malignant potential arising from mesenchymal cells with pericytic differentiation. It accounts for 3-5% of soft tissue sarcomas and 1% of vascular tumors. It usually presents in 5th to 6th decade of life. Most common sites are limbs, pelvis and head and neck. About 20% of all hemangiopericytomas are seen in head and neck, mostly in adults. Usually it presents in orbit, nasal cavity, oral cavity, jaw, parotid gland, parapharyngeal space, masticator space and jugular foramen. Long term follow up is important because of imprecise nature of the histological criteria for prediction of biologic behavior

    Synthesis of in situ photoinduced halloysite-polypyrrole@silver nanocomposite for the potential application in humidity sensors

    Get PDF
    Halloysite-polypyrrole-silver nanocomposite has been prepared via in situ photopolymerizations of pyrrole in the presence of silanized halloysite and silver nitrate as a photoinitiator. The halloysite nanoclay (HNT) was modified using the hydrogen donor silane coupling agent (DMA) in order to provide anchoring sites for the polypyrrole/silver composite (PPy@Ag). The mass loadings for both PPy and Ag have been estimated to be 21 and 26 wt%, respectively. The anchored Ag particles were found in the metallic state. The resulting PPy@Ag-modified silanized HNT has been evaluated for the potential application for impedance humidity sensors. HNT-DMA-PPy@Ag nanocomposite with different weight % of PPy@Ag (0.25 wt%, 0.5 wt%, and 1 wt%) was deposited on the pre-patterned interdigital Indium Tin Oxide (ITO) electrodes by spin coating technique. The addition of Ag nanoparticles within the nanocomposite enhances the hydrophilicity of the sensing film, which improves the sensitivity of the humidity sensors. The HNT-DMA-PPy@Ag (0.5 wt%) nanocomposite-based impedance sensors showed good sensitivity and lowered hysteresis as compared to the other ratios of the composite. The maximum calculated hysteresis loss of the HNT-DMA-PPy@Ag (0.5 wt%)-based humidity sensor is around 4.5% at 80% RH (relative humidity), and the minimum hysteresis loss estimated to be 0.05% at 20% RH levels. The response and recovery time of HNT-DMA-PPy@Ag (0.5 wt%) nanocomposite-based impedance sensors were found to be 30 and 35 s, respectively. The interesting humidity-dependent impedance properties of this novel composite make it promising in humidity sensing.Scopu

    Effective Removal of Refractory Pollutants through Cinnamic Acid-Modified Wheat Husk Biochar: Experimental and DFT-Based Analysis

    No full text
    The removal of refractory pollutants, i.e., methylene blue (MB) and ciprofloxacin (CIP), relies heavily on sorption technologies to address global demands for ongoing access to clean water. Because of the poor adsorbent–pollutant contact, traditional sorption procedures are inefficient. To accomplish this, a wheat husk biochar (WHB), loaded with cinnamic acid, was created using a simple intercalation approach to collect dangerous organic pollutants from an aqueous solution. Batch experiments, detecting technologies, and density functional theory (DFT) calculations were used to investigate the interactions at the wheat husk biochar modified with cinnamic acid (WHB/CA) and water interface to learn more about the removal mechanisms. With MB (96.52%) and CIP (94.03%), the functionalized WHB exhibited outstanding adsorption capabilities, with model fitting results revealing that the adsorption process was chemisorption and monolayer contact. Furthermore, DFT studies were performed to evaluate the interfacial interaction between MB and CIP with the WHB/CA surface. The orbital interaction diagram provided a visual representation of the interaction mechanism. These findings open up a new avenue for researchers to better understand adsorption behavior for the utilization of WHB on an industrial scale

    Effective Removal of Refractory Pollutants through Cinnamic Acid-Modified Wheat Husk Biochar: Experimental and DFT-Based Analysis

    No full text
    The removal of refractory pollutants, i.e., methylene blue (MB) and ciprofloxacin (CIP), relies heavily on sorption technologies to address global demands for ongoing access to clean water. Because of the poor adsorbent–pollutant contact, traditional sorption procedures are inefficient. To accomplish this, a wheat husk biochar (WHB), loaded with cinnamic acid, was created using a simple intercalation approach to collect dangerous organic pollutants from an aqueous solution. Batch experiments, detecting technologies, and density functional theory (DFT) calculations were used to investigate the interactions at the wheat husk biochar modified with cinnamic acid (WHB/CA) and water interface to learn more about the removal mechanisms. With MB (96.52%) and CIP (94.03%), the functionalized WHB exhibited outstanding adsorption capabilities, with model fitting results revealing that the adsorption process was chemisorption and monolayer contact. Furthermore, DFT studies were performed to evaluate the interfacial interaction between MB and CIP with the WHB/CA surface. The orbital interaction diagram provided a visual representation of the interaction mechanism. These findings open up a new avenue for researchers to better understand adsorption behavior for the utilization of WHB on an industrial scale

    A review of membrane-based dewatering technology for the concentration of liquid foods

    Get PDF
    The imperative to establish environmentally friendly and sustainable food processing techniques has compelled the food industry to explore alternative approaches that uphold food quality, ensure nutritional integrity, and minimize energy consumption. Extensive research conducted in the past decade has substantiated the superiority of membrane-based dewatering technology over conventional methods, owing to its ability to retain nutrients effectively while minimizing energy requirements. Notably, forward osmosis (FO) and membrane distillation (MD) have emerged as viable membrane technologies for food processing in the industry. However, recent reviews have underscored the prominence of FO in the enrichment of liquid food, positioning it as a preferred choice among other membrane-based processes. This review paper aims to elucidate the advancements and contributions of FO and MD in the realm of food processing while evaluating their maturity and technology readiness level for food concentration. Moreover, it endeavors to delineate specific parameters, including pretreatment techniques, membrane cleaning strategies, and membrane configurations/modules tailored to liquid food sources' distinct dewatering requirements. Although most FO and MD studies have focused on lab-scale fruit juice and whey concentration, future investigations should encompass pilot-scale process development alongside comprehensive techno-economic analyses to facilitate the smooth transition of these technologies to an industrial scale.This publication was made possible by UREP grant# [UREP 28-059-2-023] from the National Research Fund. Open Access funding was provided by the Qatar National Library (QNL). H.P. is grateful to the National Research Foundation for financial support (2019R1A2C2002602 and 2018R1A6A1A03024962).Scopu

    Synthesis and Micromechanistic Studies of Sensitized Bentonite for Methyl Orange and Rhodamine-B Adsorption from Wastewater: Experimental and DFT-Based Analysis

    No full text
    This work reports the formation of a novel adsorbent, prepared by activating bentonite with cinnamic acid, which is highly efficient to remove dyes from wastewater. The adsorption efficiency of the cinnamic acid activated bentonite was compared with unmodified bentonite by removing methyl orange and rhodamine-B from polluted water. The characterization was performed through X-ray diffraction (XRD) Fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The results indicated that acidic pH and low temperature were more suitable for the selected dyes adsorption. The analysis of the data was done by the Langmuir and Freundlich isotherms; the Freundlich isotherm showed more suitability for the equilibrium data. The data were further analyzed by pseudo-first and pseudo-second-order models to study adsorption kinetics. The results showed that methyl orange and rhodamine-B adsorption obeyed pseudo-order kinetics. The results obtained from this research suggested that acid activation of bentonite with cinnamic acid increased the surface area of the clay and hence enhanced its adsorption efficiency. The maximum adsorption efficiency for the removal of methyl orange and rhodamine-B was up to 99.3 mg g−1 and 44.7 mg g−1, respectively, at 25 °C. This research provides an economical modification technique of bentonite, which makes it cost-effective and a good adsorbent for wastewater treatment

    Osteogenic and antibacterial scaffolds of silk fibroin/Ce-doped ZnO for bone tissue engineering

    No full text
    Among the most frequently encountered facial fractures orbital floor fractures are very common. The orbital floor fracture treatment is a challenging task due to critical size defects and intricate anatomy. Tissue engineering is a promising interdisciplinary field; providing alternate bone substitutes that act as bioactive materials to induce bone repair and growth. Nanoceria (cerium oxide nanoparticles) have excellent antibacterial properties by inducing H 2O 2 due to simultaneous changes in Ce 3+ and Ce 4+ oxidation states. In the current study, we have made-up various compositions of silk fibroin (SF) scaffolds incorporated with hydroxyapatite (HAp) and Ce-doped ZnO nanoparticles through the freeze gelation method. The composite scaffolds were characterized by using FT-IR and micro-CT techniques while mechanical stability was determined through the mechanical testing machine. The other studies performed were porosity, swelling behavior, degradation, and antibacterial studies. In vitro cell studies, including attachment of cell, the proliferation of the cell, and cytotoxicity were checked by using MC3T3-E1 preosteoblast lines of the cell. Favorable biocompatibility, attachment, and proliferation were observed. The porosity of composite scaffolds was found to be in the range of 50%–66% with an appreciable degradation rate. These novel composite scaffolds present promising candidates for craniofacial defects reconstruction
    corecore