627 research outputs found

    Failure Investigation of a Fill Slope in Putrajaya, Malaysia

    Get PDF
    On 6th of January 2001, a fill slope collapsed in Putrajaya, Malaysia. The failed slope was 25m in height. The failure caused the slope to pushed two reinforced earth walls and the recently completed jetty and boat docking facilities to collapse. The depth of the failure scar was about 2m with a failure length of about 50m. A failure investigation was then carried out to determine the causes of failure. A total of thirteen new boreholes, fifteen Mackintosh probes and three hand augers were carried out to determine the soil profile. A desk study of existing information and records, site reconnaissance and mapping of the failure area was also carried out to determine the causes and the extent of the failure. Some of the findings of the failure investigation are there were no pile slab found at reinforced earth wall W2 as stated in the drawings and the groundwater table has risen as a result of the filling of the lake, which was carried out after the construction of the fill slope. The groundwater table at failure was found to be much higher than those measured during the site investigation works. Seepages of water were also seen from the failed area

    Alternative Methods of Describing Structure Formation in the Lemaitre-Tolman Model

    Full text link
    We describe several new ways of specifying the behaviour of Lemaitre-Tolman (LT) models, in each case presenting the method for obtaining the LT arbitrary functions from the given data, and the conditions for existence of such solutions. In addition to our previously considered `boundary conditions', the new ones include: a simultaneous big bang, a homogeneous density or velocity distribution in the asymptotic future, a simultaneous big crunch, a simultaneous time of maximal expansion, a chosen density or velocity distribution in the asymptotic future, only growing or only decaying fluctuations. Since these conditions are combined in pairs to specify a particular model, this considerably increases the possible ways of designing LT models with desired properties.Comment: Accepted by Phys Rev D. RevTeX 4, 13 pages, no figures. Part of a series: gr-qc/0106096, gr-qc/0303016, gr-qc/0309119. Replacement contains very minor correction

    Health Implications of Work-Related Stress among Academic Staff of Tertiary Institutions in Katsina State

    Get PDF
    This study investigated the health implications of work-related stress among academic staff of tertiary institutions in Katsina State, Nigeria. This research adopts a descriptive survey design. The population of this study is 2,036 academic staff from thirteen institutions. A sample of 328 academic staff was drawn, using proportionate stratified sampling technique. A self-developed questionnaire (HIWRS-Q) with reliability of 0.75 was used. Chi-square and t-test were used to test the hypotheses at 0.05 level of significance. Findings of this study revealed that 105 (32%) of the respondents do not experienced health implications of work-related stress while, 223 (68%) of the respondents experienced health implications of work-related stress. Also, there is significant health implication of work-related stress among academic staff (P=0.0010.05). It is recommended among others that the State government should improve on the working environment and conditions of academic staff to be health-friendly, health enhancing conditions for achieving academic excellence, and sustainable productivity in the State

    Late time solutions for inhomogeneous Lambda-CDM cosmology, their characterization and observation

    Full text link
    Assuming homogeneous isotropic Lambda-CDM cosmology allows Lambda, spatial curvature and dark matter density to be inferred from large scale structure observations such as supernovae. The purpose of this paper is to extend this to allow observations to measure or constrain inhomogeneity and anisotropy. We obtain the general inhomogeneous anisotropic Lambda-CDM solution which is locally asymptotic to an expanding de Sitter solution as a late time expansion using Starobinsky's method (analogous to the `holographic renormalization' technique in AdS/CFT) together with a resummation of the series. The dark matter is modeled as perfect dust fluid. The terms in the expansion systematically describe inhomogeneous and anisotropic deformations of an expanding FLRW solution, and are given as a spatial derivative expansion in terms of data characterizing the solution - a 3-metric and a perturbation of that 3-metric. Leading terms describe inhomogeneity and anisotropy on the scale set by the cosmological constant, approximately the horizon scale today. Higher terms in the expansion describe shorter scale variations. We compute the luminosity distance-redshift relation and argue that comparison with current and future observation would allow a partial reconstruction of the characterizing data. We also comment on smoothing these solutions noting that geometric flows (such as Ricci flow) applied to the characterizing data provide a canonical averaging method.Comment: 15 pages, 2 figures; v2: minor corrections and improvements, references adde

    Calibration of ZMPT101B voltage sensor module using polynomial regression for accurate load monitoring

    Get PDF
    Smart Electricity is quickly developing as the results of advancements in sensor technology. The accuracy of a sensing device is the backbone of every measurement and the fundamental of every electrical quantity measurement is the voltage and current sensing. The sensor calibration in the context of this research means the marking or scaling of the voltage sensor so that it can present accurate sampled voltage from the ADC output using appropriate algorithm. The peakpeak input voltage (measured with a standard FLUKE 115 meter) to the sensor is correlated with the peak-peak ADC output of the sensor using 1 to 5th order polynomial regression, in order to determine the best fitting relationship between them. The arduino microcontroller is used to receive the ADC conversion and is also programmed to calculate the root mean square value of the supply voltage. The analysis of the polynomials shows that the third order polynomial gives the best relationship between the analog input and ADC output. The accuracy of the algorithm is tested in measuring the root mean square values of the supply voltage using instantaneous voltage calculation and peak-peak voltage methods. The error in the measurement is less than 1% in the peak-peak method and less than 2.5% in the instantaneous method for voltage measurements above 50V AC, which is very good for measurements in utility. Therefore, the proposed calibration method will facilitate more accurate voltage and power computing for researchers and designers especially in load monitoring where the applied voltage is 240V or 120V ranges

    Obtaining the spacetime metric from cosmological observations

    Full text link
    Recent galaxy redshift surveys have brought in a large amount of accurate cosmological data out to redshift 0.3, and future surveys are expected to achieve a high degree of completeness out to a redshift exceeding 1. Consequently, a numerical programme for determining the metric of the universe from observational data will soon become practical; and thereby realise the ultimate application of Einstein's equations. Apart from detailing the cosmic geometry, this would allow us to verify and quantify homogeneity, rather than assuming it, as has been necessary up to now, and to do that on a metric level, and not merely at the mass distribution level. This paper is the beginning of a project aimed at such a numerical implementation. The primary observational data from our past light cone consists of galaxy redshifts, apparent luminosities, angular diameters and number densities, together with source evolution functions, absolute luminosities, true diameters and masses of sources. Here we start with the simplest case, that of spherical symmetry and a dust equation of state, and execute an algorithm that determines the unknown metric functions from this data. We discuss the challenges of turning the theoretical algorithm into a workable numerical procedure, particularly addressing the origin and the maximum in the area distance. Our numerical method is tested with several artificial data sets for homogeneous and inhomogeneous models, successfully reproducing the original models. This demonstrates the basic viability of such a scheme. Although current surveys don't have sufficient completeness or accuracy, we expect this situation to change in the near future, and in the meantime there are many refinements and generalisations to be added.Comment: 26 pages, 10 figures. Minor changes to match the published versio

    Inverse approach to Einstein's equations for fluids with vanishing anisotropic stress tensor

    Full text link
    We expand previous work on an inverse approach to Einstein Field Equations where we include fluids with energy flux and consider the vanishing of the anisotropic stress tensor. We consider the approach using warped product spacetimes of class B1B_1. Although restricted, these spacetimes include many exact solutions of interest to compact object studies and to cosmological models studies. The question explored here is as follows: given a spacetime metric, what fluid flow (timelike congruence), if any, could generate the spacetime via Einstein's equations. We calculate the flow from the condition of a vanishing anisotropic stress tensor and give results in terms of the metric functions in the three canonical types of coordinates. A condition for perfect fluid sources is also provided. The framework developed is algorithmic and suited for the study and validation of exact solutions using computer algebra systems. The framework can be applied to solutions in comoving and non-comoving frames of reference, and examples in different types of coordinates are worked out.Comment: 15 pages, matches version to appear in Phys.Rev.

    Living in a Void: Testing the Copernican Principle with Distant Supernovae

    Get PDF
    A fundamental presupposition of modern cosmology is the Copernican Principle; that we are not in a central, or otherwise special region of the Universe. Studies of Type Ia supernovae, together with the Copernican Principle, have led to the inference that the Universe is accelerating in its expansion. The usual explanation for this is that there must exist a `Dark Energy', to drive the acceleration. Alternatively, it could be the case that the Copernican Principle is invalid, and that the data has been interpreted within an inappropriate theoretical frame-work. If we were to live in a special place in the Universe, near the centre of a void where the local matter density is low, then the supernovae observations could be accounted for without the addition of dark energy. We show that the local redshift dependence of the luminosity distance can be used as a clear discriminant between these two paradigms. Future surveys of Type Ia supernovae that focus on a redshift range of ~0.1-0.4 will be ideally suited to test this hypothesis, and hence to observationally determine the validity of the Copernican Principle on new scales, as well as probing the degree to which dark energy must be considered a necessary ingredient in the Universe.Comment: 4 pages, 3 figures. Published versio

    Shrinking II -- The Distortion of the Area Distance-Redshift Relation in Inhomogeneous Isotropic Universes

    Get PDF
    This paper and the others in the series challenge the standard model of the effects of gravitational lensing on observations at large distances. We show that due to the cumulative effect of lensing, areas corresponding to an observed solid angle can be quite different than would be estimated from the corresponding Friedmann-Lema\^{\i}tre model, even when averaged over large angular scales. This paper concentrates on the specific example of spherically symmetric but spatially inhomogeneous dust universes, the Lema\^{\i}tre-Tolman-Bondi models, and shows that radial lensing significantly distorts the area distance-redshift and density-redshift relations in these exact solutions compared with the standard ones for Friedmann-Lema\^{\i}tre models. Thus inhomogeneity may introduce significant errors into distance estimates based on the standard FL relations, even after all-sky averaging. In addition a useful new gauge choice is presented for these models, solving the problem of locating the past null cone exactly.Comment: Minor technical refinement, 16 pages, RevTex, 8 eps figure
    corecore