383 research outputs found

    PUMA2—grid-based high-throughput analysis of genomes and metabolic pathways

    Get PDF
    The PUMA2 system (available at ) is an interactive, integrated bioinformatics environment for high-throughput genetic sequence analysis and metabolic reconstructions from sequence data. PUMA2 provides a framework for comparative and evolutionary analysis of genomic data and metabolic networks in the context of taxonomic and phenotypic information. Grid infrastructure is used to perform computationally intensive tasks. PUMA2 currently contains precomputed analysis of 213 prokaryotic, 22 eukaryotic, 650 mitochondrial and 1493 viral genomes and automated metabolic reconstructions for >200 organisms. Genomic data is annotated with information integrated from >20 sequence, structural and metabolic databases and ontologies. PUMA2 supports both automated and interactive expert-driven annotation of genomes, using a variety of publicly available bioinformatics tools. It also contains a suite of unique PUMA2 tools for automated assignment of gene function, evolutionary analysis of protein families and comparative analysis of metabolic pathways. PUMA2 allows users to submit batch sequence data for automated functional analysis and construction of metabolic models. The results of these analyses are made available to the users in the PUMA2 environment for further interactive sequence analysis and annotation

    Sentra: a database of signal transduction proteins for comparative genome analysis

    Get PDF
    Sentra (), a database of signal transduction proteins encoded in completely sequenced prokaryotic genomes, has been updated to reflect recent advances in understanding signal transduction events on a whole-genome scale. Sentra consists of two principal components, a manually curated list of signal transduction proteins in 202 completely sequenced prokaryotic genomes and an automatically generated listing of predicted signaling proteins in 235 sequenced genomes that are awaiting manual curation. In addition to two-component histidine kinases and response regulators, the database now lists manually curated Ser/Thr/Tyr protein kinases and protein phosphatases, as well as adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases, as defined in several recent reviews. All entries in Sentra are extensively annotated with relevant information from public databases (e.g. UniProt, KEGG, PDB and NCBI). Sentra's infrastructure was redesigned to support interactive cross-genome comparisons of signal transduction capabilities of prokaryotic organisms from a taxonomic and phenotypic perspective and in the framework of signal transduction pathways from KEGG. Sentra leverages the PUMA2 system to support interactive analysis and annotation of signal transduction proteins by the users

    ANTIRETROVIRAL THERAPY RESISTANCE MUTATIONS AMONG HIV INFECTED PEOPLE IN KAZAKHSTAN

    Get PDF
    In Kazakhstan, the number of people living with HIV (PLHIV) has increased steadily by 39% since 2010. Development of antiretroviral therapy (ART) resistance mutations (ARTRM) is a major hurdle in achieving effective treatment and prevention against HIV. Using HIV pol sequences from 602 PLHIV from Kazakhstan, we analyzed ARTRMs for their association with factors that may promote development of ARTRMs. 56% PLHIV were infected with HIV subtype A6 and 42% with CRF02_AG. The ARTRM Q174K was associated with increased viral load and decreased CD4+ cell count, while infection with CRF02_AG was associated with a lower likelihood of Q174K. Interestingly, CRF02_AG was positively associated with the ARTRM L10V that, in turn, was observed frequently with darunavir administration. Infection with CRF02_AG was positively associated with the ARTRM S162A that, in turn, was frequently observed with the administration of nevirapine, also associated with lower CD4 counts. Zidovudine or Nevirapine receipt was associated with the development of the ARTRM E138A, that, in turn, was associated with lower CD4 counts. Determination of a patient’s HIV variant can help guide ART choice in Kazakhstan. For example, PLHIV infected with CRF02_AG will benefit less from darunavir and nevirapine, and emtricitabine should replace zidovudine

    Integrin‐Targeted, Short Interfering RNA Nanocomplexes for Neuroblastoma Tumor‐Specific Delivery Achieve MYCN Silencing with Improved Survival

    Get PDF
    The authors aim to develop siRNA therapeutics for cancer that can be administered systemically to target tumors and retard their growth. The efficacy of systemic delivery of siRNA to tumors with nanoparticles based on lipids or polymers is often compromised by their rapid clearance from the circulation by the liver. Here, multifunctional cationic and anionic siRNA nanoparticle formulations are described, termed receptor‐targeted nanocomplexes (RTNs), that comprise peptides for siRNA packaging into nanoparticles and receptor‐mediated cell uptake, together with lipids that confer nanoparticles with stealth properties to enhance stability in the circulation, and fusogenic properties to enhance endosomal release within the cell. Intravenous administration of RTNs in mice leads to predominant accumulation in xenograft tumors, with very little detected in the liver, lung, or spleen. Although non‐targeted RTNs also enter the tumor, cell uptake appears to be RGD peptide‐dependent indicating integrin‐mediated uptake. RTNs with siRNA against MYCN (a member of the Myc family of transcription factors) in mice with MYCN‐amplified neuroblastoma tumors show significant retardation of xenograft tumor growth and enhanced survival. This study shows that RTN formulations can achieve specific tumor‐targeting, with minimal clearance by the liver and so enable delivery of tumor‐targeted siRNA therapeutics

    Shewanella knowledgebase: integration of the experimental data and computational predictions suggests a biological role for transcription of intergenic regions

    Get PDF
    Shewanellae are facultative γ-proteobacteria whose remarkable respiratory versatility has resulted in interest in their utility for bioremediation of heavy metals and radionuclides and for energy generation in microbial fuel cells. Extensive experimental efforts over the last several years and the availability of 21 sequenced Shewanella genomes made it possible to collect and integrate a wealth of information on the genus into one public resource providing new avenues for making biological discoveries and for developing a system level understanding of the cellular processes. The Shewanella knowledgebase was established in 2005 to provide a framework for integrated genome-based studies on Shewanella ecophysiology. The present version of the knowledgebase provides access to a diverse set of experimental and genomic data along with tools for curation of genome annotations and visualization and integration of genomic data with experimental data. As a demonstration of the utility of this resource, we examined a single microarray data set from Shewanella oneidensis MR-1 for new insights into regulatory processes. The integrated analysis of the data predicted a new type of bacterial transcriptional regulation involving co-transcription of the intergenic region with the downstream gene and suggested a biological role for co-transcription that likely prevents the binding of a regulator of the upstream gene to the regulator binding site located in the intergenic region

    Long non-coding RNAs modulate tumor microenvironment to promote metastasis: novel avenue for therapeutic intervention

    Get PDF
    Cancer is a devastating disease and the primary cause of morbidity and mortality worldwide, with cancer metastasis responsible for 90% of cancer-related deaths. Cancer metastasis is a multistep process characterized by spreading of cancer cells from the primary tumor and acquiring molecular and phenotypic changes that enable them to expand and colonize in distant organs. Despite recent advancements, the underlying molecular mechanism(s) of cancer metastasis is limited and requires further exploration. In addition to genetic alterations, epigenetic changes have been demonstrated to play an important role in the development of cancer metastasis. Long non-coding RNAs (lncRNAs) are considered one of the most critical epigenetic regulators. By regulating signaling pathways and acting as decoys, guides, and scaffolds, they modulate key molecules in every step of cancer metastasis such as dissemination of carcinoma cells, intravascular transit, and metastatic colonization. Gaining a good knowledge of the detailed molecular basis underlying lncRNAs regulating cancer metastasis may provide previously unknown therapeutic and diagnostic lncRNAs for patients with metastatic disease. In this review, we concentrate on the molecular mechanisms underlying lncRNAs in the regulation of cancer metastasis, the cross-talk with metabolic reprogramming, modulating cancer cell anoikis resistance, influencing metastatic microenvironment, and the interaction with pre-metastatic niche formation. In addition, we also discuss the clinical utility and therapeutic potential of lncRNAs for cancer treatment. Finally, we also represent areas for future research in this rapidly developing field
    corecore