306 research outputs found

    Mechanisms underlying uridine adenosine tetraphosphate-induced vascular contraction in mouse aorta: Role of thromboxane and purinergic receptors

    Get PDF
    Uridine adenosine tetraphosphate (Up4A), a novel endothelium-derived vasoactive agent, is proposed to play a role in cardiovascular disorders and induces aortic contraction through activation of cyclooxygenases (COX). We and others demonstrated that activation of A1 or A3 adenosine receptors (AR) results in vascular contraction via thromboxane (TX) A2 production. However, the mechanisms of Up4A-induced vascular contraction in mouse aorta are not understood. We hypothesize that Up4A-induced aortic contraction is through COX-derived TXA2 production, which requires activation of A1 and/or A3AR. Concentration responses to Up4A were conducted in isolated aorta. The TXB2 production, a metabolite of TXA2, was also measured. Up4A (10(-9)-10(-5) M) produced a concentration-dependent contraction >70%, which was markedly attenuated by COX and COX1 but not by COX2 inhibition. Notably, Up4A-induced aortic contraction was blunted by both TX synthase inhibitor ozagrel and TXA2 receptor (TP) antagonist SQ29548. Surprisingly, A3AR deletion had no effect on Up4A-induced contraction. Moreover, A1AR deletion or antagonism as well as A1/A3AR deletion potentiated Up4A-induced aortic contraction, suggesting a vasodilator influence of A1AR. In contrast, non-selective purinergic P2 receptor antagonist PPADS significantly blunted Up4A-induced aortic contraction to a similar extent as selective P2X1R antagonist MRS2159, the latter of which was further reduced by addition of ozagrel. Endothelial denudation almost fully attenuated Up4A-induced contraction. Furthermore, Up4A (3 μM) increased TXB2 formation, which was inhibited by either MRS2159 or ozagrel. In conclusion, Up4A-induced aortic contraction depends on activation of TX synthase and TP, which partially requires the activation of P2X1R but not A1 or A3 AR through an endothelium-dependent mechanism

    In Vivo Assessment of Coronary Flow and Cardiac Function After Bolus Adenosine Injection in Adenosine Receptor Knockout Mice

    Get PDF
    Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B. In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((p/4) 9 D2 9 VTI 9 HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states

    In Vivo Assessment of Coronary Flow and Cardiac Function After Bolus Adenosine Injection in Adenosine Receptor Knockout Mice

    Get PDF
    Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B. In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((p/4) 9 D2 9 VTI 9 HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states

    Emotions detection scheme using facial skin temperature and heart rate variability

    Get PDF
    Technology nowadays is aiming to provide a better life quality for people, schools and universities are working for the convenient of the students as well as ensuring a high quality of education is attained. Emotions detections system can be a solution for better education results and may also be used as a part of human-computer interaction applications such as robotics, games, and intelligent tutoring system, This study shows potentials method of detecting emotions using mobile computing to recognize and identify emotions (Relax, Fear, Sadness, and Joy) based on facial skin temperature, more specifically 5 spots on the face, Nose, Glabellar line (between the eyes and eyebrows) right\lift cheeks and the chin, in addition to the Heart Rate Variability (HRV). An experiment was conducted with 20 healthy subjects (10 females and 10 males, 20 to 31 years old), Both visual and auditory media were used to induce these emotions in the experiment. By the end of this paper, the output data will be anglicized by an Artificial neural network (ANN) The Multilayer Perceptron (MLP) was selected as a classifier with a result of 88.75 % accuracy. This mechanism proves that human`s emotions can easily identify without physical interaction with the subject and with high reliability with only 0.11 misprediction rat

    Complete Study of an Original Power-Exponential Transformation Approach for Generalizing Probability Distributions

    Get PDF
    In this paper, we propose a flexible and general family of distributions based on an original power-exponential transformation approach. We call it the modified generalized-G (MGG) family. The elegance and significance of this family lie in the ability to modify the standard distributions by changing their functional forms without adding new parameters, by compounding two distributions, or by adding one or two shape parameters. The aim of this modification is to provide flexible shapes for the corresponding probability functions. In particular, the distributions of the MGG family can possess increasing, constant, decreasing, “unimodal”, or “bathtub-shaped“ hazard rate functions, which are ideal for fitting several real data sets encountered in applied fields. Some members of the MGG family are proposed for special distributions. Following that, the uniform distribution is chosen as a baseline distribution to yield the modified uniform (MU) distribution with the goal of efficiently modeling measures with bounded values. Some useful key properties of the MU distribution are determined. The estimation of the unknown parameters of the MU model is discussed using seven methods, and then, a simulation study is carried out to explore the performance of the estimates. The flexibility of this model is illustrated by the analysis of two real-life data sets. When compared to fair and well-known competitor models in contemporary literature, better-fitting results are obtained for the new model

    Chronic Salt Loading and the Expression of Adenosine Receptor Subtypes

    Get PDF
    N/

    Angiotensin II stimulation alters vasomotor response to adenosine in mouse mesenteric artery: role for A1 and A2B adenosine receptors.

    Get PDF
    BACKGROUND AND PURPOSE: Stimulation of the A1 adenosine receptor and angiotensin II receptor type-1 (AT1 receptor) causes vasoconstriction through activation of cytochrome P450 4A (CYP4A) and ERK1/2. Thus, we hypothesized that acute angiotensin II activation alters the vasomotor response induced by the non-selective adenosine receptor agonist, NECA, in mouse mesenteric arteries (MAs). EXPERIMENTAL APPROACH: We used a Danish Myo Technology wire myograph to measure muscle tension in isolated MAs from wild type (WT), A1 receptor and A2B receptor knockout (KO) mice. Western blots were performed to determine the expression of AT1 receptors and CYP4A. KEY RESULTS: Acute exposure (15 min) to angiotensin II attenuated the NECA-dependent vasodilatation and enhanced vasoconstriction. This vasoconstrictor effect of angiotensin II in NECA-treated MAs was abolished in A1 receptor KO mice and in WT mice treated with the A1 receptor antagonist DPCPX, CYP4A inhibitor HET0016 and ERK1/2 inhibitor PD98059. In MAs from A2B receptor KO mice, the vasoconstrictor effect of angiotensin II on the NECA-induced response was shown to be dependent on A1 receptors. Furthermore, in A2B receptor KO mice, the expression of AT1 receptors and CYP4A was increased and the angiotensin II-induced vasoconstriction enhanced. In addition, inhibition of KATP channels with glibenclamide significantly reduced NECA-induced vasodilatation in WT mice. CONCLUSIONS AND IMPLICATIONS: Acute angiotensin II stimulation enhanced A1 receptor-dependent vasoconstriction and inhibited A2B receptor-dependent vasodilatation, leading to a net vasoconstriction and altered vasomotor response to NECA in MAs. This interaction may be important in the regulation of BP

    Fluoride produces endothelium-dependent relaxation and endothelium-independent contraction in coronary artery

    Get PDF
    ABSTRACT NaF produced endothelium-dependent relaxation and endothehum-independent contraction in porcine, bovine, canine and human coronary artery rings precontracted with either KCI or prostaglandin F2a

    Functional and RNA Expression Profile of Adenosine Receptor Subtypes in Mouse Mesenteric Arteries

    Get PDF
    Concentration–response curves (CRCs) of adenosine receptor (AR) agonists, NECA (nonspecific), CCPA (A1 specific), CGS-216870 (A2A specific), BAY 60-6583 (A2B specific), and Cl-IB-MECA (A3 specific) for mesenteric arteries (MAs) from 4 AR knockout (KO) mice (A1, A2A, A2B, and A3) and their wild type (WT) were constructed. The messenger RNA expression of MAs from KO mice and WT were also studied. Adenosine (10−5 to 10−4 M) and NECA (10−6 to 10−5 M) induced relaxation in all mice except A2B KO mice, which only showed constriction by adenosine at 10−6 to 10−4 and NECA at 10−8 to 10−5 M. The CCPA induced a significant constriction at 10−8 and 10−7 M in all mice, except A1KO. BAY 60-6583 induced relaxation (10−7 to 10−5 M) in WT and no response in A2BKO except at 10−5 M. The CRCs for BAY 60-6583 in A1, A2A, and A3 KO mice shifted to the left when compared with WT mice, suggesting an upregulation of A2B AR. No responses were noted to CGS-21680 in all mice. Cl-IB-MECA only induced relaxation at concentration greater than 10−7 M, and no differences were found between different KO mice. The CRC for Bay 60-6583 was not significantly changed in the presence of 10−5 M of L-NAME, 10−6 M of indomethacin, or both. Our data suggest that A2B AR is the predominant AR subtype and the effect may be endothelial independent, whereas A1 AR plays a significant modulatory role in mouse MAs

    Transcriptomic effects of adenosine 2A receptor deletion in healthy and endotoxemic murine myocardium

    Get PDF
    Influences of adenosine 2A receptor (A2AR) activity on the cardiac transcriptome and genesis of endotoxemic myocarditis are unclear. We applied transcriptomic profiling (39 K Affymetrix arrays) to identify A2AR-sensitive molecules, revealed by receptor knockout (KO), in healthy and endotoxemic hearts. Baseline cardiac function was unaltered and only 37 A2AR-sensitive genes modified by A2AR KO (≥1.2-fold change, \u3c5 \u3e% FDR); the five most induced are Mtr, Ppbp, Chac1, Ctsk and Cnpy2 and the five most repressed are Hp, Yipf4, Acta1, Cidec and Map3k2. Few canonical paths were impacted, with altered Gnb1, Prkar2b, Pde3b and Map3k2 (among others) implicating modified G protein/cAMP/PKA and cGMP/NOS signalling. Lipopolysaccharide (LPS; 20 mg/kg) challenge for 24 h modified \u3e4100 transcripts in wild-type (WT) myocardium (≥1.5-fold change, FDR \u3c 1 %); the most induced are Lcn2 (+590); Saa3 (+516); Serpina3n (+122); Cxcl9 (+101) and Cxcl1 (+89) and the most repressed are Car3 (−38); Adipoq (−17); Atgrl1/Aplnr (−14); H19 (−11) and Itga8 (−8). Canonical responses centred on inflammation, immunity, cell death and remodelling, with pronounced amplification of toll-like receptor (TLR) and underlying JAK-STAT, NFκB and MAPK pathways, and a ‘cardio-depressant’ profile encompassing suppressed ß-adrenergic, PKA and Ca2+ signalling, electromechanical and mitochondrial function (and major shifts in transcripts impacting function/injury including Lcn2, S100a8/S100a9, Icam1/Vcam and Nox2 induction, and Adipoq, Igf1 and Aplnr repression). Endotoxemic responses were selectively modified by A2AR KO, supporting inflammatory suppression via A2AR sensitive shifts in regulators of NFκB and JAK-STAT signalling (IκBζ, IκBα, STAT1, CDKN1a and RRAS2) without impacting the cardio-depressant gene profile. Data indicate A2ARs exert minor effects in un-stressed myocardium and selectively suppress NFκB and JAK-STAT signalling and cardiac injury without influencing cardiac depression in endotoxemia
    corecore