126 research outputs found

    Algebraic extensions of Gaudin models

    Full text link
    We perform a In\"on\"u--Wigner contraction on Gaudin models, showing how the integrability property is preserved by this algebraic procedure. Starting from Gaudin models we obtain new integrable chains, that we call Lagrange chains, associated to the same linear rr-matrix structure. We give a general construction involving rational, trigonometric and elliptic solutions of the classical Yang-Baxter equation. Two particular examples are explicitly considered: the rational Lagrange chain and the trigonometric one. In both cases local variables of the models are the generators of the direct sum of NN e(3)\mathfrak{e}(3) interacting tops.Comment: 15 pages, corrected formula

    Chasing the cuprates with dilatonic dyons

    Get PDF
    Magnetic field and momentum dissipation are key ingredients in describing condensed matter systems. We include them in gauge/gravity and systematically explore the bottom-up panorama of holographic IR effective field theories based on bulk Einstein-Maxwell Lagrangians plus scalars. The class of solutions here examined appear insufficient to capture the phenomenology of charge transport in the cuprates. We analyze in particular the temperature scaling of the resistivity and of the Hall angle. Keeping an open attitude, we illustrate weak and strong points of the approach.Comment: 30 pages, 2 figures, Version to appear in JHE

    B\"acklund transformations for the rational Lagrange chain

    Full text link
    We consider a long--range homogeneous chain where the local variables are the generators of the direct sum of NN e(3)\mathfrak{e}(3) interacting Lagrange tops. We call this classical integrable model rational ``Lagrange chain'' showing how one can obtain it starting from su(2)\mathfrak{su}(2) rational Gaudin models. Moreover we construct one- and two--point integrable maps (B\"acklund transformations).Comment: 12 page

    Modeling of a Non-Rigid Passive Exoskeleton-Mathematical Description and Musculoskeletal Simulations

    Get PDF
    There is a growing application of passive exoskeletons in the industrial sector with the purpose to reduce the incidence of work-related musculoskeletal disorders (MSDs). Nowadays, while many passive shoulder exoskeletons have been developed to support overhead tasks, they present limitations in supporting tasks such as load lifting and carrying. Further developments are therefore needed to have a wider application of these devices in the industrial sector. This paper presents a modelling procedure of a passive non-rigid exoskeleton for shoulder support that can be used to evaluate the device in its development phase. The modelling began with the definition of the equations to describe the exoskeleton kinematics and dynamics to obtain the support force profile provided by the device over the shoulder flexion angle. A musculoskeletal simulation software was then used to evaluate the effect of the device on the human body. The computed support force profile is in agreement with the purpose of the device, with the maximal support force obtained for a shoulder flexion angle of 85–90°. The maximum support force value had the same magnitude as the one reported by the device user manual (3.5 kg). In particular, for a determined exoskeleton configuration, the maximum support force value computed was 34.3 N, equal to the reported by the manufacturer. The subsequent musculoskeletal simulation showed the ability of the device to reduce the muscular activation of agonist muscles such as the anterior deltoid (−36.01%) compared to the case when the exoskeleton is not used. The musculoskeletal results showed a positive effect of the device on the joint reaction forces at the glenohumeral joint with a reduction up to 41.91%. Overall the methodology and the mathematical model proposed can be used to further develop these devices, making them suitable for a wider range of tasks

    Gaudin models with {\CU}_q(\mathfrak{osp}(1 | 2)) symmetry

    Full text link
    We consider a Gaudin model related to the q-deformed superalgebra {\CU}_q(\mathfrak{osp}(1 | 2)). We present an exact solution to that system diagonalizing a complete set of commuting observables, and providing the corresponding eigenvectors and eigenvalues. The approach used in this paper is based on the coalgebra supersymmetry of the model.Comment: 10 page

    A First Assessment of Carbon Nanotubes Grown on Oil-Well Cement via Chemical Vapor Deposition

    Get PDF
    In this study, carbon nanotubes (CNTs) were synthesized on an oil-well cement substrate using the chemical vapor deposition (CVD) method. The effect of synthesis process on cement was investigated in depth. In this regard, FE-SEM, RAMAN and X-Ray spectroscopy were used to characterize the cement before and after the synthesis process to reveal the modifications to the cementitious matrix and some unique morphological features of CNTs

    An integrable discretization of the rational su(2) Gaudin model and related systems

    Full text link
    The first part of the present paper is devoted to a systematic construction of continuous-time finite-dimensional integrable systems arising from the rational su(2) Gaudin model through certain contraction procedures. In the second part, we derive an explicit integrable Poisson map discretizing a particular Hamiltonian flow of the rational su(2) Gaudin model. Then, the contraction procedures enable us to construct explicit integrable discretizations of the continuous systems derived in the first part of the paper.Comment: 26 pages, 5 figure

    An EBC/Plasma miRNA Signature Discriminates Lung Adenocarcinomas From Pleural Mesothelioma and Healthy Controls

    Get PDF
    Background: Despite significant improvement in screening programs for cancers of the respiratory district, especially in at-risk subjects, early disease detection is still a major issue. In this scenario, new molecular and non-invasive biomarkers are needed to improve early disease diagnosis. Methods: We profiled the miRNome in exhaled breath condensate (EBC) and plasma samples from fourteen patients affected by lung AdCa, nine healthy subjects. miRNA signatures were then analyzed in another neoplasia of the respiratory district, i.e. pleural mesothelioma (n = 23) and subjects previously exposed to asbestos were used as controls for this cohort (n = 19). Selected miRNAs were analyzed in purified pulmonary neoplastic or normal epithelial and stromal cell subpopulation from AdCa patients. Finally, the plasmatic miRNA signature was analyzed in a publicly available cohort of NSCLC patients for data validation and in silico analysis was performed with predicted miRNA targets using the multiMiR tool and STRING database. Results: miR-597-5p and miR-1260a are significantly over-expressed in EBC from lung AdCa and are associated with AdCa. Similarly, miR-1260a is also up-regulated in the plasma of AdCa patients together with miR-518f-3p and correlates with presence of lung cancer, whereas let-7f-5p is under-expressed. Analysis of these circulating miRNAs in pleural mesothelioma cases confirmed that up-regulation of miR-518f-3p, -597-5p and -1260a, is specific for lung AdCa. Lastly, quantification of the miRNAs in laser-assisted microdissected lung tissues revealed that miR-518f-3p, 597-5p and miR-1260a are predominantly expressed in tumor epithelial cells. Validation analysis confirmed miR-518f-3p as a possible circulating biomarker of NSCLC. In silico analysis of the potentially modulated biological processes by these three miRNAs, shows that tumor bioenergetics are the most affected pathways. Conclusions: Overall, our data suggest a 3-miRNAs signature as a non-invasive and accurate biomarker of lung AdCa. This approach could supplement the current screening approaches for early lung cancer diagnosis
    corecore