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Abstract: In this study, carbon nanotubes (CNTs) were synthesized on an oil-well cement substrate
using the chemical vapor deposition (CVD) method. The effect of synthesis process on cement
was investigated in depth. In this regard, FE-SEM, RAMAN and X-Ray spectroscopy were used
to characterize the cement before and after the synthesis process to reveal the modifications to the
cementitious matrix and some unique morphological features of CNTs.

Keywords: carbon nanotubes; cement clinker; chemical vapor deposition; composites

1. Introduction

Since the first observation [1] and report of multi-walled carbon nanotubes (MWCNTs)
in 1991 [2], and the observation of single-walled carbon nanotubes (SWCNTs) in 1993 [3],
carbon nanotubes (CNTs) have attracted the attention of scientific and industrial world.
CNTs have unique chemical and physical properties [4] that allow for their use in several
applications [5–8]. The most common way of synthesizing carbon nanotubes is chemical
vapor deposition (CVD) [9]. CVD allows, in addition to controlling the quality and morphol-
ogy of CNTs [10,11], for nanotubes to grow on different types of supports [12,13]. In the last
decade, the use of CNTs in cement- and concrete-based composites has received particular
attention [14]. CNTs are particularly used to reinforce structures and enable the real-time
monitoring of structures thanks to their conductive and piezoresistive nature [15–17]. The
main problem with their use in cement is the difficulty of dispersion [17] and interaction
with the cement [18]. Several works in the literature report different solutions to improve
these aspects such as chemical functionalization and sonication [19–24]. However, these
techniques are destructive and often do not guarantee a good interaction and dispersion in
the matrix [25–28]. Other work has used CVD synthesis methods for nanotube growth on
Portland cement [29] and, in one case, on class G cement [30]; however, the method and
temperature used for the synthesis of CNTs differed to those used in this study. In this
work, we report a new, alternative method to properly disperse CNTs in cement matrix by
directly growing, via CVD, CNTs on a cement clinker (cement powder).
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2. Materials and Methods

The cement used in this study is an American Petroleum Institute (API) oil-well cement
Class G (Lafarge North America, Reston, VA, USA). Camphor (purity > 99%) and ferrocene
(purity > 99%) were purchased by Sigma-Aldrich (Darmstadt, Germany) and used without
any further purification for CNT production. CVD process was run accordingly with that
reported by Musso et al. [31], using camphor and ferrocene with a ratio of 20:1 by weight
and a camphor/cement ratio of 1 by weight. Cement clinker was placed inside the reactor
and heated at 1000 ◦C; once the temperature was reached, a flux of argon was used to carry
the vapors of the camphor/ferrocene mixture into the reactor, as shown in Figure 1.
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Figure 1. Schematic representation of the system used for carbon nanotube synthesis.

X-ray diffraction (XRD) patterns were obtained using the X-ray diffractometer PW3040/60
X’Pert PRO MPD from, Panalytical BV, Almelo, Netherlands in a Bragg–Brentano geometry,
with Cu Kα anode source at 40 KV and 40 mA.

Raman spectra were collected using a Renishaw inVia (H43662 model, Gloucestershire,
UK) equipped with a green laser line (514 nm) with a 50× objective. Raman spectra were
recorded in the range from 250 cm–1 to 3500 cm–1.

CNTs containing cement morphology was evaluated using a field emission scanning
electrical microscope (FE-SEM, Zeis SupraTM40, Oberkochen, Germany).

3. Results and Discussion
3.1. Assessment Analysis of CNTs Based Cement Composites

The cement clinker recovered from the CVD process was preliminarily analysed
though Raman spectroscopy [32] (Figure 2) to confirm the formation of CNTs.

The raman spectra of cement showed an inhomogeneous composition, as reported
by Deng et al. [33], with grains rich in several phases of aluminosilicate (C3S, C2S, C3A)
(Figure 2a) and grains rich in gypsum (Figure 2b). After CVD, the Raman spectra (Figure 1d)
showed the ID and IG peaks, centred at 1346 cm−1 and 1575 cm−1, respectively, proving
the formation of CNTs. The high temperature of the process led to a quite good-quality
MWCNTs with an ID/IG of 0.98 [34]. It is worth noting that both the annealed clinker
(Figure 2c) and the CVD-treated version (Figure 2d) exhibited a similar thermal conversion
of CaSO4·2H2O into CaO and SO2, according to the thermal degradative mechanism
reported by West et al. [35]. Moreover, for the CVD-treated clinker, the presence of iron
precursors might promote and accelerate the gypsum thermal degradation.

As shown in Figure 3, CNTs grown on cement clinker were analysed by FE-SEM to
evaluate their morphology.
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Figure 3. FE-SEM images of CNTs grown on cement clinker, with magnification of (a) 3000, (b) 30,000
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As reported in Figure 3a, CNTs grew on the grains of clinker without forming any
appreciable bundle, in accordance with with the results reported by Ghaharpour et al. [36],
who used ethylene as precursor. Two main typologies of CNTs could be detected by FE-
SEM analysis, as shown in Figure 3b,c. Some CNTs appear to have a smoother surface
combined with a smaller average diameter (100 nm square circled), while others have a
larger average diameter (approximately 200 nm) and seem to made by an inner CNT of
approximately 10–50 nm in diameter, covered by a multilayered structure of approximately
50 nm in thickness (red circled). The cross-sections of such structures are highlighted with
red circles. We hypothesized (see Figure S1) that, during the growth of the CNTs, their
external walls are incrementally covered by layers of iron and iron/carbon compounds
generated in excess as by-products of the CVD process.
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3.2. X-ray Diffraction Analysis

The XRD spectra taken on pure cement clinker, cement clinker annealed at 1000 ◦C,
and after the growth of CNTs are reported in Figure 4. Their analysis shows a complex
phase composition. In the pristine class G cement clinker, the presence of the main cement
phases is evident: bicalcium silicate (C2S), tricalcium silicate (C3S), calcium ferroaluminate
(C4AF), calcium sulfate dihydrate (gypsum). Distinguishing between C2S and C3S is not
easy, since the peaks are often superimposed. It seems that the main phase between the
two is C3S, with only a minor contribution of C2S.
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As previously shown with Raman analyses, after heat treatment at 1000 ◦C the an-
nealed clinker exhibits the decomposition of both gypsum and its insoluble phase (CaSO4
also called “insoluble anhydrite”) into calcium oxide and sulfur oxide. This phenomenon
is confirmed by the appearance of the peaks in the decomposition product CaO. Moreover,
probably due to exposure to ambient humidity after thermal treatment, it is possible that
part or all of the CaO is hydrated to Ca(OH)2. Again, it seems that the C3S phase is present
in a much larger fraction than C2S.

On the other hand, the clinker on which CNTs were grown via CVD shows several
different phase modifications with respect to both the pristine and the 1000 ◦C-annealed
class G cement. First, even though gypsum and its insoluble phase are no longer observed,
this phenomenon is different from the one described for the annealed clinker because the
presence of carbon during the CVD process activates the catalytic reduction reaction of
CaSO4 into CaS, as shown by Oh and Wheelock [37]. The C2S phase increases substantially,
suggesting that the conversion of C3S into C2S and CaO is favored during the CVD growth
of nanotubes, due to the catalytic role played by the iron used for the synthesis of CNTs [38].
This mechanism is also confirmed by the fact that CaO peaks in the CVD-treated clinker
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are much more intense than the ones detected for the annealed clinker [39]. As seen for
the annealed clinker, the Ca(OH)2 peak increases as well, likely due to the water uptake
after the synthesis. Finally, a small peak is observed at around 26.2◦, corresponding to the
main peak in CNTs, and another peak is observed at around 44.5◦, corresponding to the
main peak in α-Fe. The presence of both these peaks provides further confirmation of the
observed CNT growth.

4. Conclusions

In this paper, we have demonstrated the direct growth in CNTs on cement clinker
powder by CVD. Despite the fact that the process can cause the degradation of some cement
phases, this route could be further explored to avoid the problems with the functionalization
and dispersion of CNTs for cement-based composite applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12142346/s1, Figure S1: Energy-dispersive X-ray spectrometer
(EDS) results of CNTs grown on cement clinker.
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