8 research outputs found

    The role of urban trees in reducing land surface temperatures in European cities

    Get PDF
    Urban trees influence temperatures in cities. However, their effectiveness at mitigating urban heat in different climatic contexts and in comparison to treeless urban green spaces has not yet been sufficiently explored. Here, we use high-resolution satellite land surface temperatures (LSTs) and land-cover data from 293 European cities to infer the potential of urban trees to reduce LSTs. We show that urban trees exhibit lower temperatures than urban fabric across most European cities in summer and during hot extremes. Compared to continuous urban fabric, LSTs observed for urban trees are on average 0-4 K lower in Southern European regions and 8-12 K lower in Central Europe. Treeless urban green spaces are overall less effective in reducing LSTs, and their cooling effect is approximately 2-4 times lower than the cooling induced by urban trees. By revealing continental-scale patterns in the effect of trees and treeless green spaces on urban LST our results highlight the importance of considering and further investigating the climate-dependent effectiveness of heat mitigation measures in cities

    Do Electric Vehicles Mitigate Urban Heat? The Case of a Tropical City

    Get PDF
    On top of their well known positive impact on air quality and CO2 emissions, electric vehicles generate less exhaust heat compared to traditional vehicles thanks to their high engine efficiency. As such, electric vehicles have the potential to mitigate the excessive heat in urban areas—a problem which has been exacerbated due to urbanisation and climate change. Still, the heat mitigation potential of electric vehicles has not been fully understood. Here, we combine high-resolution traffic heat emission inventories with an urban climate model to simulate the impact of the fleet electrification to the near-surface air temperature in the tropical city of Singapore. We show that a full replacement of traditional internal combustion engine vehicles with electric vehicles reduces the near-surface air temperature by up to 0.6°C. The heat mitigation potential is highest during the morning traffic peak and over areas with the largest traffic density. Interestingly, the reduction in exhaust heat emissions due to the fleet electrification during the evening traffic peak hardly leads to a reduction of near-surface air-temperatures, which is attributed to the different atmospheric conditions during morning and evening. This study presents a new quantification of the city-wide impact of electric vehicles on the air temperature in a tropical urban area. The results may support policy-makers toward designing holistic solutions to address the challenge of climate change adaptation and mitigation in cities.Peer Reviewe

    Urban climate modelling with explicit representation of street trees

    No full text
    Street trees are more and more regarded as a potential measure to mitigate the excessive heat due to climate change and the urban heat island effect. Nevertheless, several aspects of the impact of street trees on the urban climate have still to be investigated, especially at the scale of an entire city. In fact, the vast majority of large-scale urban climate models only represent vegetation outside the street canyon, neglecting important effects such as the shading of trees on the canyon’s surfaces. In this thesis, this gap was addressed by coupling a regional climate model to an urban canopy model with explicit representation of street trees. First, the ability of a coupled urban climate model to represent the intra-urban climate variability was explored. Small-scale features such as urban parks and large railway areas started to be resolved at sub-kilometre grid spacing allowing a better representation of the urban heterogeneity. In order to represent the interactions between street trees, urban elements and the atmosphere in realistic regional weather and climate simulations, we coupled the vegetated urban canopy model BEP-Tree and the mesoscale weather and climate model COSMO. The performance and applicability of the coupled model, named COSMO-BEP-Tree, are demonstrated over the urban area of Basel, Switzerland, during the heatwave event of June-July 2015. Overall, the model compared well with measurements of individual components of the surface energy balance and with air and surface temperatures obtained from a flux tower, surface stations and satellites. The representation of street trees in the coupled model generally improved the agreement with observations. Street trees were found to moderately reduce the 2-m air temperature during the day, but to produce a slight warming at night. The daytime cooling was found to be primarily a local effect and proportional to the local density of street trees. In contrast, the impact was more widespread at night. Apart from the air temperature, street trees reduced the wind speed and altered the canyon surface temperature substantially. Owing to these secondary effects, street trees produced a larger impact on the outdoor thermal comfort than on air temperature. Street trees generally reduced the thermal comfort during the day, where the urban area reached "strong" to "very strong" heat stress conditions. At night, street trees increased the perceived temperature substantially. Nevertheless, the conditions were still within the "no thermal stress" category. Compared to the application of cool (highly reflective) roofs, street trees were found to provide larger benefits in terms of thermal comfort than in terms of air temperature reduction. When applied together, the effects of street trees and cool roofs added up to a remarkable reduction in air temperature

    The role of urban trees in reducing land surface temperatures in European cities

    No full text
    Urban trees influence temperatures in cities. However, their effectiveness at mitigating urban heat in different climatic contexts and in comparison to treeless urban green spaces has not yet been sufficiently explored. Here, we use high-resolution satellite land surface temperatures (LSTs) and land-cover data from 293 European cities to infer the potential of urban trees to reduce LSTs. We show that urban trees exhibit lower temperatures than urban fabric across most European cities in summer and during hot extremes. Compared to continuous urban fabric, LSTs observed for urban trees are on average 0-4 K lower in Southern European regions and 8-12 K lower in Central Europe. Treeless urban green spaces are overall less effective in reducing LSTs, and their cooling effect is approximately 2-4 times lower than the cooling induced by urban trees. By revealing continental-scale patterns in the effect of trees and treeless green spaces on urban LST our results highlight the importance of considering and further investigating the climate-dependent effectiveness of heat mitigation measures in cities.ISSN:2041-172

    Influence of Meteorological Conditions on Artificial Ice Reservoir (Icestupa) Evolution

    No full text
    Since 2014, mountain communities in Ladakh, India have been constructing dozens of Artificial Ice Reservoirs (AIRs) by spraying water through fountain systems every winter. The meltwater from these structures is crucial to meet irrigation water demands during spring. However, there is a large variability associated with this water supply due to the local weather influences at the chosen location. This study compared the ice volume evolution of an AIR built in Ladakh, India with two others built in Guttannen, Switzerland using a surface energy balance model. Model input consisted of meteorological data in conjunction with fountain discharge rate (mass input of an AIR). Model calibration and validation were completed using ice volume and surface area measurements taken from several drone surveys. The model was successful in estimating the observed ice volume evolution with a root mean square error within 18% of the maximum ice volume for all the AIRs. The location in Ladakh had a maximum ice volume four times larger compared to the Guttannen site. However, the corresponding water losses for all the AIRs were more than three-quarters of the total fountain discharge due to high fountain wastewater. Drier and colder locations in relatively cloud-free regions are expected to produce long-lasting AIRs with higher maximum ice volumes. This is a promising result for dry mountain regions, where AIR technology could provide a relatively affordable and sustainable strategy to mitigate climate change induced water stress.ISSN:2296-646

    COSMO-BEP-Tree v1.0: A coupled urban climate model with explicit representation of street trees

    Get PDF
    Street trees are more and more regarded as an effective measure to reduce excessive heat in urban areas. However, the vast majority of mesoscale urban climate models do not represent street trees in an explicit manner and, for example, do not take the important effect of shading by trees into account. In addition, urban canopy models that take interactions of trees and urban fabrics directly into account are usually limited to the street or neighbourhood scale and hence cannot be used to analyse the citywide effect of urban greening. In order to represent the interactions between street trees, urban elements and the atmosphere in realistic regional weather and climate simulations, we coupled the Building Effect Parameterisation with Trees (BEP-Tree) vegetated urban canopy model and the Consortium for Small-scale Modeling (COSMO) mesoscale weather and climate model. The performance and applicability of the coupled model, named COSMO-BEP-Tree, are demonstrated over the urban area of Basel, Switzerland, during the heatwave event of June–July 2015. Overall, the model compared well with measurements of individual components of the surface energy balance and with air and surface temperatures obtained from a flux tower, surface stations and satellites. Deficiencies were identified for nighttime air temperature and humidity, which can mainly be traced back to limitations in the simulation of the nighttime stable boundary layer in COSMO. The representation of street trees in the coupled model generally improved the agreement with observations. Street trees produced large changes in simulated sensible and latent heat flux, and wind speed. Within the canopy layer, the presence of street trees resulted in a slight reduction in daytime air temperature and a very minor increase in nighttime air temperature. The model was found to realistically respond to changes in the parameters defining the street trees: leaf area density and stomatal conductance. Overall, COSMO-BEP-Tree demonstrated the potential of (a) enabling city-wide studies on the cooling potential of street trees and (b) further enhancing the modelling capabilities and performance in urban climate modelling studies.ISSN:1991-9603ISSN:1991-959
    corecore