1,023 research outputs found

    Allen Guelzo, Henry R. Luce Professor of the Civil War Era and Director of Civil War Era Studies

    Full text link
    In this first Next Page column of the 2014-15 academic year, Allen Guelzo, the Henry R. Luce Professor of the Civil War Era and Director of Civil War Era Studies, shares with us what he would ask Dickens, St. Paul, Tolstoy, and Lincoln if he had the chance; which texts inspired him to study history; and which title he would recommend if you want to fall in love with the Civil War

    Allison Singley, Director of Parent Relations

    Full text link
    In our new Next Page column, Allison Singley, Director of Parent Relations, shares with us the three books she is currently reading and why it might take her a while to finish them, her two desert island books (one of which inspired her doctoral dissertation), how she maintains a habit of reading poetry daily, and why she doesn’t write in books anymore — or feel the need to finish one

    Erin O\u27Connor, Class of 2015

    Full text link
    In this current issue of Next Page, Erin O\u27Connor, Class of 2015 and winner of this year\u27s Silent Leader Award, tells us which influential courses and works inspired her to develop her own major, Diversity and Development in Education, what conversation she would like to have with Paulo Freire if given the chance, and which books are on her To Read list for after graduation

    In Solidarity

    Full text link
    This edition of Next Page is a departure from our usual question and answer format with a featured campus reader. Instead, we asked speakers who participated in the College’s recent Student Solidarity Rally (March 1, 2017) to recommend readings that might further our understanding of the topics on which they spoke

    Molecular mechanism of MLL PHD3 and RNA recognition by the Cyp33 RRM domain

    Get PDF
    The nuclear protein cyclophilin 33 (Cyp33) is a peptidyl-prolyl cis-trans isomerase that catalyzes cis-trans isomerization of the peptide bond preceding a proline and promotes folding and conformational changes in folded and unfolded proteins. The N-terminal RNA-recognition motif (RRM) domain of Cyp33 has been found to associate with the third plant homeodomain (PHD3) finger of the mixed lineage leukemia (MLL) proto-oncoprotein and a poly(A) RNA sequence. Here, we report a 1.9 A resolution crystal structure of the RRM domain of Cyp33 and describe the molecular mechanism of PHD3 and RNA recognition. The Cyp33 RRM domain folds into a five-stranded antiparallel beta-sheet and two alpha-helices. The RRM domain, but not the catalytic module of Cyp33, binds strongly to PHD3, exhibiting a 2 muM affinity as measured by isothermal titration calorimetry. NMR chemical shift perturbation (CSP) analysis and dynamics data reveal that the beta strands and the beta2-beta3 loop of the RRM domain are involved in the interaction with PHD3. Mutations in the PHD3-binding site or deletions in the beta2-beta3 loop lead to a significantly reduced affinity or abrogation of the interaction. The RNA-binding pocket of the Cyp33 RRM domain, mapped on the basis of NMR CSP and mutagenesis, partially overlaps with the PHD3-binding site, and RNA association is abolished in the presence of MLL PHD3. Full-length Cyp33 acts as a negative regulator of MLL-induced transcription and reduces the expression levels of MLL target genes MEIS1 and HOXA9. Together, these in vitro and in vivo data provide insight into the multiple functions of Cyp33 RRM and suggest a Cyp33-dependent mechanism for regulating the transcriptional activity of MLL

    Engineering Schottky contacts in open-air fabricated heterojunction solar cells to enable high performance and ohmic charge transport.

    Get PDF
    The efficiencies of open-air processed Cu2O/Zn(1-x)Mg(x)O heterojunction solar cells are doubled by reducing the effect of the Schottky barrier between Zn(1-x)Mg(x)O and the indium tin oxide (ITO) top contact. By depositing Zn(1-x)Mg(x)O with a long band-tail, charge flows through the Zn(1-x)Mg(x)O/ITO Schottky barrier without rectification by hopping between the sub-bandgap states. High current densities are obtained by controlling the Zn(1-x)Mg(x)O thickness to ensure that the Schottky barrier is spatially removed from the p-n junction, allowing the full built-in potential to form, in addition to taking advantage of the increased electrical conductivity of the Zn(1-x)Mg(x)O films with increasing thickness. This work therefore shows that the Zn(1-x)Mg(x)O window layer sub-bandgap state density and thickness are critical parameters that can be engineered to minimize the effect of Schottky barriers on device performance. More generally, these findings show how to improve the performance of other photovoltaic system reliant on transparent top contacts, e.g., CZTS and CIGS.This work was supported by EPSRC of the UK (award number RG3717)This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/am5058663

    Resonant energy transfer of triplet excitons from pentacene to PbSe nanocrystals.

    Get PDF
    The efficient transfer of energy between organic and inorganic semiconductors is a widely sought after property, but has so far been limited to the transfer of spin-singlet excitons. Here we report efficient resonant-energy transfer of molecular spin-triplet excitons from organic semiconductors to inorganic semiconductors. We use ultrafast optical absorption spectroscopy to track the dynamics of triplets, generated in pentacene through singlet exciton fission, at the interface with lead selenide (PbSe) nanocrystals. We show that triplets transfer to PbSe rapidly (<1 ps) and efficiently, with 1.9 triplets transferred for every photon absorbed in pentacene, but only when the bandgap of the nanocrystals is close to resonance (±0.2 eV) with the triplet energy. Following triplet transfer, the excitation can undergo either charge separation, allowing photovoltaic operation, or radiative recombination in the nanocrystal, enabling luminescent harvesting of triplet exciton energy in light-emitting structures.This is the author's accepted manuscript and will be under embargo until the 5th of April 2015. The final version is published by NPG in Nature Materials here: http://www.nature.com/nmat/journal/v13/n11/full/nmat4093.html

    Enhanced performance in fluorene-free organometal halide perovskite light-emitting diodes using tunable, low electron affinity oxide electron injectors.

    Get PDF
    Fluorene-free perovskite light-emitting diodes (LEDs) with low turn-on voltages, higher luminance and sharp, color-pure electroluminescence are obtained by replacing the F8 electron injector with ZnO, which is directly deposited onto the CH3NH3PbBr3 perovskite using spatial atmospheric atomic layer deposition. The electron injection barrier can also be reduced by decreasing the ZnO electron affinity through Mg incorporation, leading to lower turn-on voltages.The authors would like to acknowledge funding from the Cambridge Commonwealth, European and International Trusts, Rutherford Foundation of New Zealand, A*STAR National Science Scholarship, Girton College Cambridge, Gates Cambridge Scholarship, EPSRC (Reference: EP/G060738/1), the ERC Advanced Investigator Grant, Novox, ERC-2009-adG 247276 and Cambridge Display Technology.This is the final version of the article. It was first published by Wiley at http://onlinelibrary.wiley.com/doi/10.1002/adma.201405044/abstract

    Protective role of vitamin B6 (PLP) against DNA damage in Drosophila models of type 2 diabetes

    Get PDF
    Growing evidence shows that improper intake of vitamin B6 increases cancer risk and several studies indicate that diabetic patients have a higher risk of developing tumors. We previously demonstrated that in Drosophila the deficiency of Pyridoxal 5' phosphate (PLP), the active form of vitamin B6, causes chromosome aberrations (CABs), one of cancer prerequisites, and increases hemolymph glucose content. Starting from these data we asked if it was possible to provide a link between the aforementioned studies. Thus, we tested the effect of low PLP levels on DNA integrity in diabetic cells. To this aim we generated two Drosophila models of type 2 diabetes, the first by impairing insulin signaling and the second by rearing flies in high sugar diet. We showed that glucose treatment induced CABs in diabetic individuals but not in controls. More interestingly, PLP deficiency caused high frequencies of CABs in both diabetic models demonstrating that hyperglycemia, combined to reduced PLP level, impairs DNA integrity. PLP-depleted diabetic cells accumulated Advanced Glycation End products (AGEs) that largely contribute to CABs as α-lipoic acid, an AGE inhibitor, rescued not only AGEs but also CABs. These data, extrapolated to humans, indicate that low PLP levels, impacting on DNA integrity, may be considered one of the possible links between diabetes and cancer
    corecore