166 research outputs found

    The Anatomy of a Scientific Rumor

    Get PDF
    The announcement of the discovery of a Higgs boson-like particle at CERN will be remembered as one of the milestones of the scientific endeavor of the 21st century. In this paper we present a study of information spreading processes on Twitter before, during and after the announcement of the discovery of a new particle with the features of the elusive Higgs boson on 4th July 2012. We report evidence for non-trivial spatio-temporal patterns in user activities at individual and global level, such as tweeting, re-tweeting and replying to existing tweets. We provide a possible explanation for the observed time-varying dynamics of user activities during the spreading of this scientific "rumor". We model the information spreading in the corresponding network of individuals who posted a tweet related to the Higgs boson discovery. Finally, we show that we are able to reproduce the global behavior of about 500,000 individuals with remarkable accuracy.Comment: 11 pages, 8 figure

    PrefMiner: Mining User's Preferences for Intelligent Mobile Notification Management

    Get PDF

    FutureWare: Designing a Middleware for Anticipatory Mobile Computing

    Get PDF
    Ubiquitous computing is moving from context-awareness to context-prediction. In order to build truly anticipatory systems developers have to deal with many challenges, from multimodal sensing to modeling context from sensed data, and, when necessary, coordinating multiple predictive models across devices. Novel expressive programming interfaces and paradigms are needed for this new class of mobile and ubiquitous applications. In this paper we present FutureWare, a middleware for seamless development of mobile applications that rely on context prediction. FutureWare exposes an expressive API to lift the burden of mobile sensing, individual and group behavior modeling, and future context querying, from an application developer. We implement FutureWare as an Android library, and through a scenario-based testing and a demo app we show that it represents an efficient way of supporting anticipatory applications, reducing the necessary coding effort by two orders of magnitude

    Solving Graph-based Public Good Games with Tree Search and Imitation Learning

    Get PDF
    Public goods games represent insightful settings for studying incentives for individual agents to make contributions that, while costly for each of them, benefit the wider society. In this work, we adopt the perspective of a central planner with a global view of a network of self-interested agents and the goal of maximizing some desired property in the context of a best-shot public goods game. Existing algorithms for this known NP-complete problem find solutions that are sub-optimal and cannot optimize for criteria other than social welfare.In order to efficiently solve public goods games, our proposed method directly exploits the correspondence between equilibria and the Maximal Independent Set (mIS) structural property of graphs. In particular, we define a Markov Decision Process which incrementally generates an mIS, and adopt a planning method to search for equilibria, outperforming existing methods. Furthermore, we devise a graph imitation learning technique that uses demonstrations of the search to obtain a graph neural network parametrized policy which quickly generalizes to unseen game instances. Our evaluation results show that this policy is able to reach 99.5\% of the performance of the planning method while being three orders of magnitude faster to evaluate on the largest graphs tested. The methods presented in this work can be applied to a large class of public goods games of potentially high societal impact and more broadly to other graph combinatorial optimization problems

    A Measurement Study on the Advertisements Displayed to Web Users Coming from the Regular Web and from Tor

    Get PDF
    Online advertising is an effective way for businesses to find new customers and expand their reach to a great variety of audiences. Due to the large number of participants interacting in the process, advertising networks act as brokers between website owners and businesses facilitating the display of advertisements. Unfortunately, this system is abused by cybercriminals to perform illegal activities such as malvertising. In this paper, we perform a measurement of malvertising from the user point of view. Our goal is to collect advertisements from a regular Internet connection and using The Onion Router in an attempt to understand whether using different technologies to access the Web could influence the probability of infection. We compare the data from our experiments to find differences in the malvertising activity observed. We show that the level of maliciousness is similar between the two types of accesses. Nevertheless, there are significant differences related to the malicious landing pages delivered in each type of access. Our results provide the research community with insights into how ad traffic is treated depending on the way users access Web content

    MyTraces: Investigating Correlation and Causation between Users' Emotional States and Mobile Phone Interaction

    Get PDF
    Most of the existing work concerning the analysis of emotional states and mobile phone interaction has been based on correlation analysis. In this paper, for the first time, we carry out a causality study to investigate the causal links between users’ emotional states and their interaction with mobile phones, which could provide valuable information to practitioners and researchers. The analysis is based on a dataset collected in-the-wild. We recorded 5,118 mood reports from 28 users over a period of 20 days. Our results show that users’ emotions have a causal impact on different aspects of mobile phone interaction. On the other hand, we can observe a causal impact of the use of specific applications, reflecting the external users’ context, such as socializing and traveling, on happiness and stress level. This study has profound implications for the design of interactive mobile systems since it identifies the dimensions that have causal effects on users’ interaction with mobile phones and vice versa. These findings might lead to the design of more effective computing systems and services that rely on the analysis of the emotional state of users, for example for marketing and digital health applications

    Analyzing and predicting the spatial penetration of Airbnb in U.S. cities

    Get PDF
    In the hospitality industry, the room and apartment sharing platform of Airbnb has been accused of unfair competition. Detractors have pointed out the chronic lack of proper legislation. Unfortunately, there is little quantitative evidence about Airbnb's spatial penetration upon which to base such a legislation. In this study, we analyze Airbnb's spatial distribution in eight U.S. urban areas, in relation to both geographic, socio-demographic, and economic information. We find that, despite being very different in terms of population composition, size, and wealth, all eight cities exhibit the same pattern: that is, areas of high Airbnb presence are those occupied by the \newpart{``talented and creative''} classes, and those that are close to city centers. This result is consistent so much so that the accuracy of predicting Airbnb's spatial penetration is as high as 0.725

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    My Phone and Me: Understanding People's Receptivity to Mobile Notifications

    Get PDF
    Notifications are extremely beneficial to users, but they often demand their attention at inappropriate moments. In this paper we present an in-situ study of mobile interruptibility focusing on the effect of cognitive and physical factors on the response time and the disruption perceived from a notification. Through a mixed method of automated smartphone logging and experience sampling we collected 10372 in-the-wild notifications and 474 questionnaire responses on notification perception from 20 users. We found that the response time and the perceived disruption from a notification can be influenced by its presentation, alert type, sender-recipient relationship as well as the type, completion level and complexity of the task in which the user is engaged. We found that even a notification that contains important or useful content can cause disruption. Finally, we observe the substantial role of the psychological traits of the individuals on the response time and the disruption perceived from a notification

    Are you getting sick? Predicting influenza-like symptoms using human mobility behaviors

    Get PDF
    Understanding and modeling the mobility of individuals is of paramount importance for public health. In particular, mobility characterization is key to predict the spatial and temporal diffusion of human-transmitted infections. However, the mobility behavior of a person can also reveal relevant information about her/his health conditions. In this paper, we study the impact of people mobility behaviors for predicting the future presence of flu-like and cold symptoms (i.e. fever, sore throat, cough, shortness of breath, headache, muscle pain, malaise, and cold). To this end, we use the mobility traces from mobile phones and the daily self-reported flu-like and cold symptoms of 29 individuals from February 20, 2013 to March 21, 2013. First of all, we demonstrate that daily symptoms of an individual can be predicted by using his/her mobility trace characteristics (e.g. total displacement, radius of gyration, number of unique visited places, etc.). Then, we present and validate models that are able to successfully predict the future presence of symptoms by analyzing the mobility patterns of our individuals. The proposed methodology could have a societal impact opening the way to customized mobile phone applications, which may detect and suggest to the user specific actions in order to prevent disease spreading and minimize the risk of contagion
    • …
    corecore