22 research outputs found

    Congenital deficiency reveals critical role of ISG15 in skin homeostasis

    Get PDF
    Ulcerating skin lesions are manifestations of human ISG15 deficiency, a type I interferonopathy. However, chronic inflammation may not be their exclusive cause. We describe two siblings with recurrent skin ulcers that healed with scar formation upon corticosteroid treatment. Both had a homozygous nonsense mutation in the ISG15 gene, leading to unstable ISG15 protein lacking the functional domain. We characterized ISG15(-/-) dermal fibroblasts, HaCaT keratinocytes, and human induced pluripotent stem cell-derived vascular endothelial cells. ISG15-deficient cells exhibited the expected hyperinflammatory phenotype, but also dysregulated expression of molecules critical for connective tissue and epidermis integrity, including reduced collagens and adhesion molecules, but increased matrix metalloproteinases. ISG15(-/-) fibroblasts exhibited elevated ROS levels and reduced ROS scavenger expression. As opposed to hyperinflammation, defective collagen and integrin synthesis was not rescued by conjugation-deficient ISG15. Cell migration was retarded in ISG15(-/-) fibroblasts and HaCaT keratinocytes, but normalized under ruxolitinib treatment. Desmosome density was reduced in an ISG15(-/-) 3D epidermis model. Additionally, there were loose architecture and reduced collagen and desmoglein expression, which could be reversed by treatment with ruxolitinib/doxycycline/TGF-beta 1. These results reveal critical roles of ISG15 in maintaining cell migration and epidermis and connective tissue homeostasis, whereby the latter likely requires its conjugation to yet unidentified targets

    A Systems Biology Approach to Drug Targets in Pseudomonas aeruginosa Biofilm

    Get PDF
    Antibiotic resistance is an increasing problem in the health care system and we are in a constant race with evolving bacteria. Biofilm-associated growth is thought to play a key role in bacterial adaptability and antibiotic resistance. We employed a systems biology approach to identify candidate drug targets for biofilm-associated bacteria by imitating specific microenvironments found in microbial communities associated with biofilm formation. A previously reconstructed metabolic model of Pseudomonas aeruginosa (PA) was used to study the effect of gene deletion on bacterial growth in planktonic and biofilm-like environmental conditions. A set of 26 genes essential in both conditions was identified. Moreover, these genes have no homology with any human gene. While none of these genes were essential in only one of the conditions, we found condition-dependent genes, which could be used to slow growth specifically in biofilm-associated PA. Furthermore, we performed a double gene deletion study and obtained 17 combinations consisting of 21 different genes, which were conditionally essential. While most of the difference in double essential gene sets could be explained by different medium composition found in biofilm-like and planktonic conditions, we observed a clear effect of changes in oxygen availability on the growth performance. Eight gene pairs were found to be synthetic lethal in oxygen-limited conditions. These gene sets may serve as novel metabolic drug targets to combat particularly biofilm-associated PA. Taken together, this study demonstrates that metabolic modeling of human pathogens can be used to identify oxygen-sensitive drug targets and thus, that this systems biology approach represents a powerful tool to identify novel candidate antibiotic targets

    Vertical directional coupler network using a-Si slope waveguides

    No full text
    A CMOS compatible three-dimensional (3D) integrated photonics circuit for multilayer silicon photonics is reported. Slopes with angles between 10° and 15° were created in the oxide layer using single step wet etching to connect the two Si waveguide layers. Amorphous Si (a-Si) deposited using hot wire chemical vapor deposition (HWCVD) at a temperature of 230°C was used to fabricate the device. Losses of 0.5 dB/slope were measured in the slope waveguides at 1310 nm wavelength. As a demonstration, we propose a 4x4 network switch using a-Si based vertical directional coupler

    Biofilm Formation in the 96-Well Microtiter Plate

    No full text
    The microtiter plate (also called 96-well plate) assay for studying biofilm formation is a method which allows for the observation of bacterial adherence to an abiotic surface. In this assay, bacteria are incubated in vinyl “U”-bottom or other types of 96-well microtiter plates. Following incubation, planktonic bacteria are rinsed away, and the remaining adherent bacteria (biofilms) are stained with crystal violet dye, thus allowing visualization of the biofilm. If quantitation is desired, the stained biofilms are solubilized and transferred to a 96-well optically clear flat-bottom plate for measurement by spectrophotometry

    House dust and forage mite allergens and their role in human and canine atopic dermatitis

    No full text
    This article reviews the literature regarding the role of house dust and forage mite allergens in canine atopic dermatitis. The presence of immunoglobulin E (IgE) to these mites, especially to Dermatophagoides farinae, is common in both normal and atopic dogs. Exposure of dogs to the different mites is described both in the direct environment and in the coat of animals for house dust mites and in the food for forage mites. Allergens causing allergic disease in dogs seem to be different from those in humans. Dogs seem to react to high molecular weight allergens, compared to the low molecular weight group 1 and group 2 proteases that are commonly implicated in humans with atopic diseases. Despite numerous published studies dealing with this subject, a number of questions still need to be addressed to better understand the exact role of these mites in the pathogenesis of canine atopic dermatitis and to improve the quality of the allergens used in practice.T. J. Nuttall, Peter B. Hill, E. Bensignor, T. Willemse and the members of the International Task Force on Canine Atopic Dermatiti
    corecore