5 research outputs found

    Summaries for Context-Free Games

    Get PDF
    We study two-player games played on the infinite graph of sentential forms induced by a contextfree grammar (that comes with an ownership partitioning of the non-terminals). The winning condition is inclusion of the derived terminal word in the language of a finite automaton. Our contribution is a new algorithm to decide the winning player and to compute her strategy. It is based on a novel representation of all plays starting in a non-terminal. The representation uses the domain of Boolean formulas over the transition monoid of the target automaton. The elements of the monoid are essentially procedure summaries, and our approach can be seen as the first summary-based algorithm for the synthesis of recursive programs. We show that our algorithm has optimal (doubly exponential) time complexity, that it is compatible with recent antichain optimizations, and that it admits a lazy evaluation strategy. Our preliminary experiments indeed show encouraging results, indicating a speed up of three orders of magnitude over a competitor.Peer reviewe

    Mitochondrial NAD+ Controls Nuclear ARTD1-Induced ADP-Ribosylation

    Full text link
    In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk

    Synthesis and structure-affinity relationship of small molecules for imaging human CD80 by positron emission tomography

    Full text link
    The costimulatory molecule CD80 is an early marker for immune activation. It is upregulated on activated antigen-presenting cells. We aimed at developing a tracer for imaging CD80 by positron emission tomography (PET). Novel CD80 ligands were synthesized and tested by SPR for affinity to human CD80 (hCD80) and displacement of endogenous ligands. Several compounds bound with one-digit nanomolar affinity to hCD80 and displaced CTLA-4 and CD28 at nanomolar concentrations. A structure-affinity relationship study revealed relevant moieties for strong affinity to hCD80 and positions for further modifications. Lead compound MT107 (7f) was radiolabeled with carbon-11. In vitro, [11^{11}C]MT107 showed specific binding to hCD80-positive tissue and high plasma protein binding. In vivo, [11^{11}C]MT107 accumulated in liver, gall bladder, and intestines but only scarcely in hCD80-positive xenografts. The unfavorable in vivo performance may result from high plasma protein binding and extensive biliary excretion

    Mitochondrial NAD+ Controls Nuclear ARTD1-Induced ADP-Ribosylation

    No full text
    In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk.ISSN:1097-2765ISSN:1097-416
    corecore