19 research outputs found

    Exploring the landscape of dismantling strategies based on the community structure of networks

    Get PDF
    Network dismantling is a relevant research area in network science, gathering attention both from a theoretical and an operational point of view. Here, we propose a general framework for dismantling that prioritizes the removal of nodes that bridge together different network communities. The strategies we detect are not unique, as they depend on the specific realization of the community detection algorithm considered. However, when applying the methodology to some synthetic benchmark and real-world networks we find that the dismantling performances are strongly robust, and do not depend on the specific algorithm. Thus, the stochasticity inherently present in many community detection algorithms allows to identify several strategies that have comparable effectiveness but require the removal of distinct subsets of nodes. This feature is highly relevant in operational contexts in which the removal of nodes is costly and allows to identify the least expensive strategy that still holds high effectiveness

    Detecting informative higher-order interactions in statistically validated hypergraphs

    Get PDF
    Recent empirical evidence has shown that in many real-world systems, successfully represented as networks, interactions are not limited to dyads, but often involve three or more agents at a time. These data are better described by hypergraphs, where hyperlinks encode higher-order interactions among a group of nodes. In spite of the extensive literature on networks, detecting informative hyperlinks in real world hypergraphs is still an open problem. Here we propose an analytic approach to filter hypergraphs by identifying those hyperlinks that are over-expressed with respect to a random null hypothesis, and represent the most relevant higher-order connections. We apply our method to a class of synthetic benchmarks and to several datasets, showing that the method highlights hyperlinks that are more informative than those extracted with pairwise approaches. Our method provides a first way, to the best of our knowledge, to obtain statistically validated hypergraphs, separating informative connections from noisy ones

    Elites, communities and the limited benefits of mentorship in electronic music

    Get PDF
    While the emergence of success in creative professions, such as music, has been studied extensively, the link between individual success and collaboration is not yet fully uncovered. Here we aim to fill this gap by analyzing longitudinal data on the co-releasing and mentoring patterns of popular electronic music artists appearing in the annual Top 100 ranking of DJ Magazine. We find that while this ranking list of popularity publishes 100 names, only the top 20 is stable over time, showcasing a lock-in effect on the electronic music elite. Based on the temporal co-release network of top musicians, we extract a diverse community structure characterizing the electronic music industry. These groups of artists are temporally segregated, sequentially formed around leading musicians, and represent changes in musical genres. We show that a major driving force behind the formation of music communities is mentorship: around half of musicians entering the top 100 have been mentored by current leading figures before they entered the list. We also find that mentees are unlikely to break into the top 20, yet have much higher expected best ranks than those who were not mentored. This implies that mentorship helps rising talents, but becoming an all-time star requires more. Our results provide insights into the intertwined roles of success and collaboration in electronic music, highlighting the mechanisms shaping the formation and landscape of artistic elites in electronic music

    High-frequency trading and networked markets

    Get PDF
    Financial markets have undergone a deep reorganization during the last 20 y. A mixture of technological innovation and regulatory constraints has promoted the diffusion of market fragmentation and high-frequency trading. The new stock market has changed the traditional ecology of market participants and market professionals, and financial markets have evolved into complex sociotechnical institutions characterized by a great heterogeneity in the time scales of market members’ interactions that cover more than eight orders of magnitude. We analyze three different datasets for two highly studied market venues recorded in 2004 to 2006, 2010 to 2011, and 2018. Using methods of complex network theory, we show that transactions between specific couples of market members are systematically and persistently overexpressed or underexpressed. Contemporary stock markets are therefore networked markets where liquidity provision of market members has statistically detectable preferences or avoidances with respect to some market members over time with a degree of persistence that can cover several months. We show a sizable increase in both the number and persistence of networked relationships between market members in most recent years and how technological and regulatory innovations affect the networked nature of the markets. Our study also shows that the portfolio of strategic trading decisions of high-frequency traders has evolved over the years, adding to the liquidity provision other market activities that consume market liquidity

    Sector Neutral Portfolios: Long Memory Motifs Persistence in Market Structure Dynamics

    Get PDF
    We study soft persistence (existence in subsequent temporal layers of motifs from the initial layer) of motif structures in Triangulated Maximally Filtered Graphs (TMFG) generated from time-varying Kendall correlation matrices computed from stock prices log-returns over rolling windows with exponential smoothing. We observe long-memory processes in these structures in the form of power law decays in the number of persistent motifs. The decays then transition to a plateau regime with a power-law decay with smaller exponent. We demonstrate that identifying persistent motifs allows for forecasting and applications to portfolio diversification. Balanced portfolios are often constructed from the analysis of historic correlations, however not all past correlations are persistently reflected into the future. Sector neutrality has also been a central theme in portfolio diversification and systemic risk. We present an unsupervised technique to identify persistently correlated sets of stocks. These are empirically found to identify sectors driven by strong fundamentals. Applications of these findings are tested in two distinct ways on four different markets, resulting in significant reduction in portfolio volatility. A persistence-based measure for portfolio allocation is proposed and shown to outperform volatility weighting when tested out of sample

    Exploring the landscape of dismantling strategies based on the community structure of networks

    No full text
    Abstract Network dismantling is a relevant research area in network science, gathering attention both from a theoretical and an operational point of view. Here, we propose a general framework for dismantling that prioritizes the removal of nodes that bridge together different network communities. The strategies we detect are not unique, as they depend on the specific realization of the community detection algorithm considered. However, when applying the methodology to some synthetic benchmark and real-world networks we find that the dismantling performances are strongly robust, and do not depend on the specific algorithm. Thus, the stochasticity inherently present in many community detection algorithms allows to identify several strategies that have comparable effectiveness but require the removal of distinct subsets of nodes. This feature is highly relevant in operational contexts in which the removal of nodes is costly and allows to identify the least expensive strategy that still holds high effectiveness

    Science of success: An introduction

    No full text
    Performance and success are often used as synonyms to express individual accomplishment. However, from a scientific perspective they cover very different concepts: performance is about individual effort, while success is a collective quantity capturing the community's acknowledgment of effort and performance. In these notes, we investigate the quantitative rules that govern both, trying to model their interdependence within the framework of complex systems. We explore different fields, ranging from online crowdfunding platforms to academia, with the idea of applying scientifically sound methods to uncover the universal laws that determine the allocation of merit in science and society

    Bootstrap validation of links of a minimum spanning tree

    No full text
    We describe two different bootstrap methods applied to the detection of a minimum spanning tree obtained from a set of multivariate variables. We show that two different bootstrap procedures provide partly distinct information that can be informative about the investigated complex system. We investigate two case studies by considering daily returns of two portfolios of stocks traded in the US equity markets in different time periods. The first method performs a \u201crow bootstrap\u201d whereas the second method performs a \u201cpair bootstrap\u201d to obtain a bootstrap replica of each correlation coefficient. We show that the parallel use of the two methods can highlight details about the stability of links selected by the minimum spanning tree associated with the correlation matrix of stock portfolios that can be missed by applying only a single bootstrap methods
    corecore