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Financial markets have undergone a deep reorganization dur-
ing the last 20 y. A mixture of technological innovation and
regulatory constraints has promoted the diffusion of market frag-
mentation and high-frequency trading. The new stock market
has changed the traditional ecology of market participants and
market professionals, and financial markets have evolved into
complex sociotechnical institutions characterized by a great het-
erogeneity in the time scales of market members’ interactions
that cover more than eight orders of magnitude. We analyze
three different datasets for two highly studied market venues
recorded in 2004 to 2006, 2010 to 2011, and 2018. Using methods
of complex network theory, we show that transactions between
specific couples of market members are systematically and per-
sistently overexpressed or underexpressed. Contemporary stock
markets are therefore networked markets where liquidity provi-
sion of market members has statistically detectable preferences
or avoidances with respect to some market members over time
with a degree of persistence that can cover several months.
We show a sizable increase in both the number and persis-
tence of networked relationships between market members in
most recent years and how technological and regulatory inno-
vations affect the networked nature of the markets. Our study
also shows that the portfolio of strategic trading decisions of
high-frequency traders has evolved over the years, adding to the
liquidity provision other market activities that consume market
liquidity.

complex networks | financial markets | high-frequency trading |
statistically validated networks

he last 20 y have seen deep changes in the way finan-

cial markets operate (1). The adoption of the regulation
about the national market system (“NMS”) for equity securi-
ties (2) from the Securities and Exchange Commission of the
United States and a similar adoption subsequently taken by
the European Securities and Market Authority have affected
the structure and practice of trading of equity securities in US,
European, and several other markets worldwide. The most evi-
dent change has been the proliferation of market venues in a
given country or in a group of countries, usually addressed as
fragmentation of markets. A related change has been the spe-
cialization of a number of market participants in high-frequency
traders (HFTs). HFTs are professional traders able to use high
speed in the generation, routing, and execution of orders (3).
The amount of transactions performed by HFTs is today esti-
mated to be around 50% in most markets (4). Typical response
time of these traders to a market state or information can be
as fast as a few microseconds. This exceptional time perfor-
mance is often achieved by colocating technical infrastructures of
HFTs near the computer infrastructure of large market venues.
The influence of regulatory changes and technological innova-
tions have changed financial markets into complex sociotechnical
institutions (5-9).

There is no shared view about how changes occurring in mar-
kets have modified the basis of financial asset trading. One view
is that the presence of HFTs makes markets more efficient by
decreasing the transaction cost per unit of transaction and by
facilitating price discovery (10-13). Another view is that HFTs
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provide liquidity only under normal market conditions whereas
their trading is not guaranteed in exceptional market states, mak-
ing the markets more fragile and prone to flash or microflash
crashes (14). There is also empirical evidence that HFTs com-
petition is deteriorating liquidity provision (15) and that the
interaction of HFT's with orders of large institutions is performed
in a strategic way (16).

The technical and regulatory changes observed in markets in
the last 20 y are not minor but rather they deeply affect the
strategic behavior of market participants (5). An example of this
huge impact concerns market making and liquidity provision.
Market making is the trading activity providing liquidity to the
market (i.e., the trading activity allowing one to find quickly a
counterpart for a transaction in a market). In the past market
making was done by institutionalized figures (called specialists
at the New York Stock Exchange and jobbers at the London
Stock Exchange [LSE]) that paid fees to the market and had
privileges and obligations for their role. Today, in most settings,
market making is not institutionalized and it is freely strategically
performed by specialized market participants. Technical innova-
tions (e.g., the use of computer algorithms and the fast access and
process of market quotes) and regulatory changes (e.g., market
fragmentation and changes in the information production and
dissemination) provide a changing environment deeply affect-
ing the profile and ecology of different classes of investors and
the way they perform their strategic choices. We believe this
extraordinary transition into a changing financial market set-
ting is a clear case study of evolution and adaptation of the
ecology of market participants to new states of the financial
world (17-19).

Significance

During the last two decades, technological innovation and
regulatory requirements have deeply changed the way finan-
cial markets work. Today, financial markets are characterized
by the presence of high-frequency traders (able to perform
financial transactions at a submillisecond time scale) and mar-
ket fragmentation. Using methods of complex networks, we
show that some market participants (specifically so-called
market members) preferentially interact with or avoid other
market members persistently over a time scale extending up
to several months. By investigating two financial venues at
three different periods of time from two different decades,
we show that the persistent networked nature of today’s mar-
kets is most pronounced since the diffusion of high-frequency
trading and market fragmentation.
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Recently the empirical characterization of the trading deci-
sions of investors (20) has made it possible to detect an ecology
of investors (21, 22). In the present study, we analyze two dif-
ferent venues of stock markets in three different periods of
time at the level of market members, i.c., at the level of those
companies that are acting for their proprietary trading or are
acting as brokers or dealers for the trading of customers. Our
aim is to investigate whether the liquidity provision of the most
active market members (notably the HFTs) presents a networked
structure (i.e., it is provided under a framework of strategic
decisions). With the term “networked structure” we mean that
market members trading in a venue of a fragmented market
in the presence of HFTs might establish statistically validated
preferential or avoided trading relationships with specific mar-
ket members. By using tools of complex networks (23), we detect
a networked structure among market members and we docu-
ment that this networked structure has evolved over the past
20 y from a poor and dynamically changing to a richer and
dynamically more persistent network structure highlighting an
ever-increasing strategic provision of liquidity.

Financial transactions occurring in financial markets can be
described in terms of trading networks (23). Examples are trad-
ing networks occurring in the Interbank market (24) and in
equity markets (25). Specifically, we investigate the degree and
persistence of pairwise trading relations between market mem-
bers of two European stock market venues in 2004 to 2006, 2010
to 2011, and 2018. The first one is the electronic order book of
the LSE during the time period 2004 to 2006 and the second one
is the Stockholm venue of the Nasdaq OMX market during the
years 2010 to 2011 and 2018. Nasdaq OMX is a subsidiary of
Nasdaq, Inc. operating in European Nordic countries. The first
set of data refers to a period when the high-frequency trading
practice and its infrastructures were still developing and HFTs
were expanding their share of trading. During those years, mar-
ket fragmentation was still pretty limited due to the fact that the
regulation about the competition between market venues was
not yet issued by the European Securities and Market Author-
ity. Market fragmentation and the diffusion of high-frequency
trading expands in Europe starting from 2009 (15, 26) and
the presence of market members performing HFTs became
widespread in European financial markets at the same time.
Since 2010, the Nasdaq OMX has provided to its market mem-
bers the same technology used in the main US Nasdaq venue,
including INET platform and colocation services, ensuring HFTs
access to the order book within microseconds or less. Therefore,
our three sets of data cover one period when the practice, regu-
latory framework, and technology of HFTs were still developing
and two periods characterized by key regulatory and technical
changes.

Our analysis and statistical characterization of trading net-
works show that financial markets have continuously evolved into
ever more complex sociotechnical systems (5-9) with a persistent
networked structure which is present in the interaction of the dif-
ferent types of market members, making the liquidity provision
a sophisticated strategic activity. In other words, since the first
decade of this century markets have changed deeply and the eco-
logical profile of market members has experienced a profound
mutation. With our results we show that network-based stud-
ies are able to characterize the ecological fingerprint of some
market members acting in this highly competitive sociotechnical
system.

Data and Methodology

We investigate the LSE and the Nasdag OMX Stockholm
venues. The LSE dataset we investigate is a special release of
the Rebuild Order Book. Specifically, we investigate 20 highly
liquid stocks, traded during the 2004 to 2006 y. The Rebuild
Order Book contains information on price, volume, submission,
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transaction, or cancelation time for each order. In addition to its
standard information, our special release of the database con-
tains the anonymized identity of the market member who placed
the order. Here we investigate all orders submitted through the
electronic order book. With this unique dataset we track the trad-
ing activity of anonymized market members of the LSE in the
investigated years. For the Nasdag OMX Stockholm venue, it
was possible to obtain historical information about the identity of
market members performing each transaction. Having this type
of information is a rather unique characteristic of this venue and
for this reason the venue has been investigated in several papers
dealing with HFTs (15, 16, 27-31). The dataset for the Stockholm
venue of the Nasdaqg OMX is the ITCH INET data stream main-
tained and provided by the Nasdaqg OMX (32). For this venue,
we investigate the 20 most liquid stocks, traded during the Febru-
ary 2010 to December 2011 and the January 2018 to December
2018 time periods. The ITCH data stream captures the complete
dynamics occurring on the electronic order book through a set of
messages specifically formatted for each kind of action.

For both periods, we are able to reconstruct the full dynam-
ics of the book in terms of submission (except for a small set
of transactions of the order of less than 5% of all transactions),
modification, and deletion of limit orders, together with the
occurrence of transactions as a result of market orders. Match-
ing the data with ticker data, we are then able to assign the
identity of market members involved in each transaction and
uncover their role both as aggressor or counterpart and as buyer
or seller. A market participant is acting as aggressor when the
participant submits a market order, i.e., an order of buy or sell to
be instantly executed at the best offer or ask. The other market
member participating in the transaction is called the counterpart.
Counterparties submit quotes, called limit orders, to the order
book signaling the willingness to buy or sell a given number of
shares of an asset at a given price. Traditionally, market members
submitting limit orders were considered as market participants
providing liquidity to the market whereas market members sub-
mitting market orders were considered as participants taking
liquidity from the market. The market evolution of the last 20
y has made this distinction less clear and today it is rather com-
plex to discriminate between market members making or taking
liquidity (5, 33, 34). While quotes, i.e., limit orders, of ITCH
are anonymous, for the time period February 2010 to Decem-
ber 2011 the ITCH carried the identity of both market members
involved in a transaction. This policy changed in March 2014
when it introduced the possibility for market members to be
anonymous when trading large cap and OMXS30 shares.

In the period 2004 to 2006, LSE data have a temporal reso-
lution of 1 s for the order book dynamics. The time resolution
improves to 1 ms for the Nasdaq data of the Stockholm venue
in 2010 to 2011 and further reduces to 1 us for the same venue
in 2018. These temporal resolutions are indicative of the fastest
time scales present at the venues at the time of data recording
although orders faster than the highest resolution might have
been executed in all cases.

For each venue, each time period, and each stock we build
two directed trading networks. One network is a buyer—seller
(BS) directed network where we put an arc between two mar-
ket members when they perform a mutual transaction within a
given period. The period we choose in this study is a calendar
month. For each calendar month, we determine the buyer—seller
trading network of market members trading a specific stock.
The weight of each arc is given by the number of transactions
observed between the two market members when the first one
is acting as a buyer and the second one is acting as a seller. In
addition to the buyer-seller trading network, we also consider
the aggressor—counterpart (AC) directed network to investigate
the liquidity provision relationships between each pair of market
members.
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The first test we perform is designed to characterize patterns of
transactions occurring between market members with respect to
their categorization in terms of their ability to act as HFTs. Cate-
gorizing market members as HFTs directly from data by defining
typical intervals for indicators such that the time to fill of orders
or the short-term inventory balance is today poorly effective due
to continuous innovation and specialization of HFTs. The time to
fill is the time elapsed between the submission of the limit order
(sent from the counterpart) and the submission of the matching
market order (sent from the aggressor). In SI Appendix, section
1, we show deciles of the time to fill of active market members
trading three representative stocks during a specific month. The
deciles of time to fill are in the range from 1 s or less to thousands
of seconds for December 2006, in the range from 1 ms or less to
thousands of seconds for December 2011 and in the range from 1
us or less to thousands of seconds for December 2018. The pres-
ence of very low values for the deciles of time to fill does not
directly imply that a market member is a HFT. In fact, HFTs can
take the role of both aggressor and counterpart in a transaction
and therefore observing a low value of deciles provides only evi-
dence that at least one of the two market members entering in
the transaction is a HFT.

For this reason, as in other studies (16, 31), we use public
information present in news, web pages, and technical litera-
ture to identify market members that are acting as HFTs at the
Stockholm Stock Exchange. The list of market members we cat-
egorize as primarily HFTs is given in SI Appendix, section 2.
We do not perform the present test on the LSE venue because
we know only the anonymized identity of market members for
this venue.

For the Nasdaq OMX Stockholm venue, each month, and each
stock, we compute the number of transactions occurring between
the two categories of market members. They perform four types
of transactions in the AC (BS) network: 1) type 1, both aggressor
(buyer) and counterpart (seller) are HFTs; 2) type 2, the aggres-
sor (buyer) is a HFT and the counterpart (seller) is not; 3) type 3,
the aggressor (buyer) is not a HFT and the counterpart (seller)
is; 4) type 4, neither the aggressor (buyer) nor the counterpart
(seller) is a HFT.

In our test, for each type of transaction we compare the
empirically observed number with those computed in random
simulations of the so-called configuration model of the same
empirical network (35). A random realization of the configura-
tion model is obtained starting from the empirical network of
individual market members by randomizing the links of the net-
work while preserving the number of transactions performed by
each market member both as aggressor (buyer) and as coun-
terpart (seller). Thus, random realizations of our null model
preserve the number of transactions at the individual market
member level while destroying preferential or avoided inter-
actions between pairs of market members. Multiple links and
self-loops are allowed in random realizations as market mem-
bers perform several transactions with the same counterpart
and with themselves. We iterate the randomizing procedure at
least 100 times for each network and we compute for each of
the four types of transactions a z score and a P value. In S/
Appendix, section 3 we show a numerical example of the prob-
ability density function of the number of transactions observed
in random realizations together with a Gaussian fitting. Due
to the fact that we are performing a multiple-hypothesis test
comparison, we evaluate the null hypothesis of random pair-
ing of the four types of transactions by adopting the control
for the false discovery rate (36). Our test tells us that transac-
tions of types 2 and 3, i.e., transaction between a HFT and a
non-HFT, are more common than expected in a random pairing
whereas transactions of types 1 and 4, i.e., transaction between
two HFTs or between two non-HFTs, are less common than
expected.
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By performing our test for each month and each stock, we
verify that the rejection rate of the null hypothesis of the configu-
ration model is higher than or equal to 65% for the AC network
and higher than or equal to 75% for the BS network in 2010. The
rejection rate becomes 100% for all months and all stocks in 2011
and 2018.

Having detected statistical evidence of the networked structure
of transactions occurring between pairs of market members acting
at the Nasdaqg OMX we now investigate the nature and persis-
tence of these overexpressed and underexpressed interactions in a
more systematic way. Specifically, to capture the networked struc-
ture arising from the specialized interaction of market members,
we use the methodology of statistically validated networks (37,
38). Statistically validated networks are those filtered networks
where pairs of nodes of the network are selected when a given
null hypothesis is rejected for them (23). Examples are statisti-
cally validated networks in bipartite systems (37, 38) and networks
obtained by filtering the so-called backbone of a network (39-41).
In our study, we use statistically validated networks as defined
in ref. 38 because we are able to detect both overexpressed and
underexpressed pair trading relationships with this method. This
property of the methodology allows us to highlight both preferred
and avoided trading relationships.

Specifically, for each pair of market members we compare
the number of transactions occurring between them with the
expected number they would get if each market member ran-
domly draws its counterpart from an urn. Thus, the strength
of our approach is that we validate the number of interactions
occurring between market members with respect to a null model
that takes into account the heterogeneity of their activity. Sum-
mary statistics of the heterogeneity of the number of transactions
of market members are shown in SI Appendix, section 4. In SI
Appendix, section 5 we list the international securities identifi-
cation number (ISIN) of the investigated stocks together with
the average number of transactions observed for each venue and
each time period.

Our statistical test works as follows: For each pair of market
members (labeled here as A and B) we count the transactions
Nip occurring between them when they are trading a stock of
ISIN code i. We take into account the directionality of the cou-
ple (i.e., we consider distinct the aggressor [buyer] role from
the counterpart [seller] role) and we apply the test on both the
aggressor — counterpart (buyer — seller) and counterpart —
aggressor (seller — buyer) directions. Then we count the total
number of transactions for stock 7 that we label as N*, the num-
ber of transactions N in which A is acting as an aggressor
(buyer) on ¢, and the number of transactions in which B is acting
as a counterpart (seller) on i (labeled as Nj). We then compute
the probability of finding a number of transactions larger than or
equal to N4p as the result of two random draws, one for mar-
ket member A acting as an aggressor (buyer) and one for market
member B acting as a counterpart (seller). This probability is
well approximated by (37, 38)

Nj p—1

p(Nap)=1- > H(X|N', Ny, Np), 1)
X=0

where H is the hypergeometric distribution. We can use the
probability p1(Nj ) as a P value to test the null hypothesis of
random pairing of the directed pair of market members (4, B).
We apply the control for the false discovery rate as a correction
method for multiple-hypothesis testing (36). The couples that
reject the null hypothesis are showing an overexpressed num-
ber of transactions, signaling that they are interacting more than
expected under our null model. By looking at the other tail of
the hypergeometric distribution we are also able to compute the
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probability of finding a number of transaction smaller than or
equal to N4,

N

AB
2(Ni 5) =Z (X|N', Ni, Nj). 2]

The couples of market members that reject the null hypothesis
with this P value show an underexpressed number of transac-
tions, indicating that they are interacting less than expected by
the null hypothesis of random pairing.

Networked Markets

In Fig. 14 we show the density of statistically validated links,
i.e., the ratio between the number of statistically validated links
divided by the total number of possible links in the network. The
investigated network is the AC network but a similar behavior is
also observed for the BS network. Fig. 1 A, Top refers to overex-
pressed links whereas Fig. 1 A, Bottom refers to underexpressed
links. The left symbols show results for the LSE in 2004 to 2006
(292 market members were active in this market in the considered
period), the center symbols refer to Nasdaq Nordic Stockholm
Exchange (XSTO) in 2010 to 2011 (i.e., the Stockholm venue of
the Nasdag OMX with 98 market members active in the consid-
ered period), and the right symbols refer to XSTO in 2018 (with
75 market members active). Trading networks were investigated
on a monthly basis for the 20 most liquid stocks traded in the
market. Fig. 1 A shows a progressive increase of the density of
overexpressed and underexpressed links as a function of time.

For the investigated venues, time periods, and the 20 most
liquid stocks, we compute the time to fill detected in each trans-
action to track the boost in speed introduced by the diffusion and
development of high-frequency trading. The time to fill is a basic
indicator providing information about the typical time needed
such that a limit order ends up in a transaction. In Fig. 1B we
show the probability density function of the time to fill for all
transactions performed for the 20 most liquid stocks traded at the
LSE in 2004 to 2006 (Fig. 1 B, Top Left), XSTO in 2010 to 2011
(Fig. 1 B, Middle Left), and XSTO in 2018 (Fig. 1 B, Bottom Left).
In Fig. 1 B, Right we show the corresponding cumulative distri-
bution functions. Fig. 1B shows that markets have significantly
decreased the time to fill over the years and that transacted limit
orders present a time to fill shorter than 1 s in about 25% of the
cases in 2018.
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The average value of the time to fill observed for transactions
occurring in a given time period is an aggregated information. It
is possible to disaggregate this information by considering the
time to fill for transactions occurring between each couple of
market members where member A is acting as an aggressor and
member B is acting as a counterpart for each stock and each trad-
ing month. Median times to fill for representative stocks traded
at the LSE in 2006, XSTO in 2011, and XSTO 2018 are shown in
SI Appendix, section 6. When this disaggregation is performed, a
large heterogeneity is observed among different pairs of market
members. In fact, the range in Fig. 1B covers up to 10 orders of
magnitude.

We discover that the increase in trading speed, that is docu-
mented by the probability density functions and cumulative den-
sity functions in Fig. 1B, is associated with an increase of the den-
sity of over- and underexpressed relationships between market
members (Fig. 1C). Indeed, scatter plots show the relationship
between the median of the time to fill and the average den-
sity of overexpressions (underexpressions) for each month and
each stock. Different colors highlight different venues in differ-
ent periods of time. There is a clear relationship between speed
and number of over- and underexpressions. The faster the system
is, the larger the number of detected over- and underexpressions.
Part of the effect we observe might be due to the increased num-
ber of transactions observed over the years. In fact, the number
of transactions is affecting the power of our statistical test (in
the present case the number of transactions of a stock occurred
in 1 mo). By analyzing cases where the power of the statisti-
cal test is the same, we have verified that our results are only
marginally affected by the different power of the test. An exam-
ple of our control of the power of the test is given in S Appendix,
section 7.

Our statistical test is performed by estimating overexpressions
and underexpressions in terms of the number of transactions
observed between two market members. In general, different
transactions have associated different volumes and therefore in
principle an overexpressed number of transactions do not neces-
sarily imply an overexpressed amount of exchanged volume. We
have therefore tested that overexpressed and underexpressed
numbers of transactions also imply overexpressed and underex-
pressed exchanged volume for the large majority of couples of
market members. Details of our test are shown in SI Appendix,
section 8. For overexpressed links, we have also observed
that the average fraction of exchanged volume normalized per
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(A) Violin plots of the link density of the overexpressed (Top) and underexpressed (Bottom) as a function of the set of data for the aggressor —

counterpart network. The investigated sets concern monthly overexpressed and underexpressed networks for the 20 most liquid stocks traded at the LSE in
2004 to 2006, at the XSTO in 2010 to 2011, and at the XSTO in 2018. (B) Probability density function (Left) and cumulative density function (Right) of the time
to fill for all transactions performed for the 20 most liquid stocks traded at the LSE in 2004 to 2006 (Top Left and Top Right), XSTO in 2010 to 2011 (Middle
Left and Middle Right), and XSTO in 2018 (Bottom Left and Bottom Right). In panels of probability density function (Left) the red vertical line indicates the
median value of time to fill. In panels of cumulative distribution function (Right) the green vertical line indicates the fraction of transactions with time to
fill shorter than 1 s. (C) Scatter plots of the median of the time to fill (in seconds) and the average density of overexpressions (Left) or underexpressions
(Right) on the investigated stocks. Each symbol refers to a specific month and a specific stock. Different colors of the symbol are defined by the venues and
periods of time. Blue symbols refer to LSE in 2004 to 2006, orange symbols to XSTO in 2010 to 2011, and green symbols to XSTO in 2018.
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number of overexpressed links has steadily increased during the
time periods of 2011 and 2018. Details of this investigation are
given in SI Appendix, section 11.

In the following, to minimize the role of the different power
of the test for different stocks and months, we present a detailed
analysis of three stocks that approximately traded the same num-
ber of transactions in the two venues in 2006, 2011, and 2018.
The selected stocks are British Petroleum (BP) for LSE in 2006,
Electrolux B (ELUX) for XSTO in 2011, and SKF B (SKF) for
XSTO in 2018. BP was the most liquid stock at the LSE in 2006.
ELUX and SKF are chosen because they have an average num-
ber of monthly transactions similar to those of BP in 2006. In
fact, these three stocks had an average number of monthly trans-
actions equal to 103,841, 103,192, and 99,488 in 2006, 2011, and
2018, respectively.

In Table 1 we show the number of directed couples of mar-
ket members that are validated for a number of months ranging
from 1 to 12 (column 1) in the AC and BS networks. We note
that at the LSE in 2006 the overexpressed (OE) and underex-
pressed (UE) observed relationships were poorly persistent over
time. In fact, only 2 OE couples were observed for 6 or more
months in the BS network and only 4 OE couples in the AC
network. UE couples were a bit more persistent, totaling 12 UE
couples in the BS network and 13 UE couples in the AC net-
work. It is worth noting that only one couple of market members
turns out to be validated in all 12 mo. This occurs for a UE cou-
ple in the AC network. The pattern is different for Electrolux
in 2011 and SKF in 2018. For Electrolux in 2011, a number of
directed pairs of market members present a persistence for 6 or
more months. Several pairs present a persistence for 9 or more
months and the BS and AC network presents 3 UE and 5 UE
pairs, respectively, that are observed for all months of the year.
The persistence of the networked relations further increases in
2018. In fact, for SKF in 2018 we detect many OE and UE rela-
tionships that are observed for 6 or more and 9 or more months
and more than 10 OE or UE pairs are observed for all months
of the year.

In Fig. 24 we show six panels describing the time persis-
tence of overexpression or underexpression of each aggressor —
counterpart couple observed in the AC statistically validated net-
works of SKF in the 12 mo of 2018. The statistical validations
are grouped in three sets. Fig. 2 A, Left includes couples of
market members that are not HFTs, Fig. 2 A, Center includes
couples of one HFT interacting with a non-HFT, and Fig. 2 A4,
Right includes couples of two HFTs. For a given month, the
presence of a vertical segment in the panels indicates overex-

pression or underexpression of the number of transactions of a
market member couple (labeled along the z axis by a numer-
ical index). Fig. 2 A4, Center shows that the number of trades
between HFTs and non-HFTs is highly and persistently over-
expressed for a large set of couples whereas the number of
transactions between couples of non-HFTs (Fig. 2 A, Bottom
Left) or couples of HFTs (Fig. 2 A, Bottom Right) is persis-
tently underexpressed. The persistence of underexpression over
time is particularly striking for HFT couples. This result shows
the strategic ability of HFTs in avoiding transactions among
them despite the anonymity of the fast submitted (and canceled)
quotes.

Fig. 2B shows the most persistent overexpressed aggressor —
counterpart pairs detected in 9 or more months of 2018. Fig.
2C is a similar plot showing only the underexpressed aggres-
sor — counterpart pairs detected in 9 or more months of 2018.
We label the nodes with the tick symbol of the market mem-
ber. The color of the node is purple when the market member
is categorized as performing high-frequency trading. The mar-
ket members that are not categorized as high-frequency traders
are shown as orange nodes. Fig. 2 B and C shows visually the
networked aspect of the AC trading networks. When we look at
the underexpressions observed during 9 or more months (Fig.
2C), we see that market members described as HFTs (pur-
ple nodes) present underexpressed interactions between couples
of them. In parallel to this strategic avoidance, we also detect
that some market members not performing high-frequency trad-
ing also present persistent underexpressed interactions between
them (orange nodes). The same type of networked structure
is observed in the investigated most liquid stocks both in the
AC and in the BS networks. Figures analogous to Fig. 24 com-
puted for stocks BP in 2006 and ELUX in 2011 can be found
in SI Appendix, section 9. For the sake of completeness, in S/
Appendix, section 10 we report some basic metrics of trans-
action networks of market members for the same stocks and
time periods.

The behavior observed for BP, ELUX, and SKF is not a special
one but rather it is representative of most liquid stocks. In Fig. 3
we show the mean value (averaged over the 20 most liquid stocks
of each venue) of the Jaccard index computed between statisti-
cally validated networks detected at month ¢ and at month i + g
of the investigated venue and period. Given a stock k, we con-
sider the statistically validated links of over- and underexpressed
relationships at months ¢ and ¢+ g. For illustrative purposes,
let us consider overexpressed relationships. We label the set of
overexpressions for stock k at months i and i + ¢ as s¥(¢) and

Table 1. Number of directed pairs of market members that are validated in k months (column 1)

No. BP 2006 ELUX 2011 SKF 2018

of months BSOE BSUE ACOE ACUE BSOE BSUE ACOE ACUE BSOE BSUE ACOE ACUE
1 633 106 496 73 649 423 521 315 332 198 257 176
2 92 16 84 21 173 169 125 110 82 101 81 77
3 25 8 11 10 65 64 63 69 52 54 53 42
4 8 11 3 10 41 40 33 33 34 39 23 35
5 1 5 9 2 35 35 21 21 22 29 19 29
6 1 2 1 5 14 15 20 13 17 19 18 24
7 0 3 0 1 16 8 18 14 14 23 24 7
8 1 2 1 1 16 10 12 6 17 16 13 12
9 0 3 1 1 9 4 9 2 9 11 12 10
10 0 1 1 2 8 8 6 5 15 13 12 10
11 0 1 0 2 4 1 5 3 19 12 10 4
12 0 0 0 1 0 3 0 5 16 10 15 14

The three stocks analyzed are BP, ELUX, and SKF. The years of the analysis are 2006, 2011, and 2018, respec-
tively. The numbers of market members trading each stock in each venue and year were 203, 78, and 64,

respectively.
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Fig. 2. (A) Time persistence of overexpression or underexpression of each aggressor — counterpart couple observed in the AC statistically validated
networks of SKF in the 12 mo of 2018 (vertical scale of the panels). The statistical validations are grouped in three sets. Left sets include couples of market
members that are not HFTs, Center sets include couples of market members composed of one HFT interacting with a non-HFT, and Right sets include couples
of two HFTs. For Top panels, the presence of a vertical segment indicates overexpression of the number of transactions of the market member couple
(labeled by a numerical index) whereas in Bottom panels underexpressions are highlighted. B shows the overexpressed (red arcs) aggressor — counterpart
couples detected in 9 or more months of 2018. C shows the underexpressed (blue arcs) aggressor — counterpart pairs detected in 9 or more months of
2018. In B and C, we label nodes with the tick symbol of the market member and we use a purple color when the market member is described is a HFT. The
market members that are not explicitly described as HFTs are shown as orange nodes. We use trading ID abbreviations to market members' names, which

are the same as used by Nasdaq Nordic (see http://www.nasdagomxnordic.com/membership-list).

sk (i+ g), respectively. For stock k the Jaccard index is therefore
computed as

i (iyit g)=1ss () Ns5(i+9)l/Iss () Uss (i+g)l, 3]
where the symbol |s| indicates the number of elements of the set
s. The Jaccard index goes from 0 (no overlap of links between
the two networks) to 1 (perfect overlap of all links). An anal-
ogous definition can be written for underexpressed statistically
validated networks. For each pair of months, the Jaccard index
is computed for each stock of the venue and the results obtained
are averaged over the 20 stocks of each venue and for all possi-
ble month gaps g. Fig. 3 shows the average degree of persistence
of overexpressions (Fig. 3, Left) and underexpressions (Fig. 3,
Right) for the AC networks for the LSE venue in 2006 (blue line),
the XSTO venue in 2011 (orange line), and the XSTO venue in
2018 (green line). The average persistence is quite limited for
the LSE in 2006 (especially for overexpressed links), significantly
pronounced for XSTO in 2011, and still more pronounced for
XSTO in 2018. A plot of the matrix of the average Jaccard index
for each pair of months is shown in ST Appendix, section 9.
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The increase in the degree of persistence in 2011 and 2018
is evident both in terms of the degree of persistence and in the
temporal extension of it. A similar pattern is observed for under-
expressions. It is worth noting that the relatively high value of
the average Jaccard index observed for underexpressions in LSE
2006 could be due to the fact that statistically validated networks
of underexpressed links for this venue are typically composed of
few links and Jaccard indexes between networks with few links
have associated large digitization noise. The persistence behav-
ior is also quite evident when investigated in a single stock. In
SI Appendix, section 9 we show the plot of matrices of the Jac-
card index for each pair of months for representative stocks BP,
ELUX, and SKF and for most traded stocks BP, VOLVO, and
H&M. We interpret the observation of these high levels of per-
sistence as a strong empirical evidence of the fact that equity
markets have evolved toward a networked state. In the new net-
worked state, some market members preferentially interact with
or avoid other market members over periods of time covering up
to several months.

Our results show that market venues have evolved from a
state where overexpressed and underexpressed market member

Musciotto et al.
High-frequency trading and networked markets


http://www.nasdaqomxnordic.com/membership-list
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015573118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2015573118/-/DCSupplemental
https://doi.org/10.1073/pnas.2015573118

Downloaded from https://www.pnas.org by 147.163.114.205 on March 8, 2022 from | P address 147.163.114.205.

over expressions

0.35
0.30
)
T 0.25
£
el
5 0.20 —— LSE 2006
% XSTO 2011
50157 —— XSTO 2018
o
©0.10
[
>
©0.05 -
0.00
T T T T T
2 4 6 8 10

months gap

under expressions

0.35
0.30
3
© 0.254
£
T 0.20
o
o
£0.15
[
(o))
© 0.10
[
% 0.05 —— LSE 2006
) XSTO 2011
0.004 — Xst02018
T T T T T
2 4 6 8 10
months gap

Fig. 3. Average Jaccard index between AC statistically validated networks computed for each month gap. The average is computed on the values obtained
for the 20 most liquid stocks traded in each venue for the considered year. Left shows overexpressions and Right shows underexpressions. Blue line refers to
the LSE venue in 2006, orange line refers to the XSTO venue in 2011, and green line to the XSTO venue in 2018. The color band around each line indicates
the average value plus and minus the standard deviation of the mean. The average persistence is quite limited for LSE in 2006, significantly pronounced and
persistent for XSTO in 2011, and further more pronounced and persistent in XSTO in 2018.

interactions were low in relative number and poorly persistent to
a progressive increase of the number and persistency of overex-
pressed and underexpressed interactions over the years (Figs. 2
and 3 and Table 1). What does this mean for the liquidity pro-
vision of market members acting as market makers? To answer
this question we investigate how the HFT market members inter-
act with the remaining ones when they act as an aggressor or
a counterpart. We first focus on the asymmetry of interaction
when a market member acts as aggressor or a counterpart. In S/
Appendix, Fig. 21 we show the scatter plot of the median time
to fill for all pairs of market members trading both as aggres-
sor and as counterpart a given stock during a specific month.
The results shown in SI Appendix refer to BP, ELUX, VOLVO,
SKF, and HM. Our results show that the pattern of pair inter-
actions has dramatically increased its complexity starting from
the diffusion of HFT and market fragmentation (i.e., after 2009).
In fact, scatter plots in SI Appendix, Fig. 21 show a very rich
presence of asymmetric interactions between a large number of
pairs of market members. For Nasdaq data we can investigate
the role of HFTs in these asymmetric interactions. Therefore,
for XSTO data, we verify that the median time to fill of transac-
tions occurring when a HFT acts as an aggressor on a non-HFT
counterpart is on average different from the median time to fill
occurring when the aggressor is a non-HFT and the counterpart
is a HFT. Moreover, the median time to fill when a HFT is the
aggressor is close to the one observed when both market mem-
bers are non-HFT. The shortest median time to fill is observed
for the transaction occurring between pairs of HFTs. We report
these measurements for the representative stocks in SI Appendix,
Tables 11-13.

Our results are compatible with the hypothesis that HFTs
perform transactions with a portfolio of strategies that can be
roughly classified as follows: HFTs 1) act as market makers (42),
2) perform proprietary statistical arbitrage, 3) perform predatory
trading (43), and 4) execute back run on a detected ongoing large
institutional order (16, 44). Asymmetry of interactions was lim-
ited at the LSE in 2006, quite pronounced at XSTO in 2011,
and very pronounced at XSTO in 2018, testifying to a continu-
ous modification and specialization of the ecological profile of
market participants. Our results based on a complex network
approach, detailed in SI Appendix, section 12, allow us to con-
clude that, during market activity, HFTs typically switch between
acting as market makers providing liquidity to the market and an
alternative activity as back runner (and therefore liquidity tak-
ers). The ecology of HFT market members is therefore richer
than a basic division between liquidity providers and liquidity
takers. Several HFT market members are building up a kind
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of hybrid profile including both aspects and switching between
the two on the basis of rapidly accessed and processed market
information.

Discussion

Today financial markets are intrinsically different from the finan-
cial markets of 20 y ago. The demand for efficiency and com-
petition among market makers requested by regulators and the
technological innovations introduced in finance have produced
a new market organization where the role of market makers is
today taken by specialized companies that are able to access the
electronic order book within a few microseconds. In parallel to
the continuous decrease of this response time, a proliferation of
trading venues has been observed in the largest financial centers
of the world, making financial centers highly fragmented (7).

In this work we have analyzed three different market venues
with state-of-the-art technological settings at the period of the
recording of the data. The first one is the electronic venue of the
LSE during 2004 to 2006. At that time, the London equity mar-
kets were poorly fragmented and high-frequency traders were
still in a phase of rapid technological innovation and growth
in terms of share of the transactions executed. Our analysis of
this market shows moderate signs of networked structure of the
market and it reveals that the persistence of the networked over-
expressed or underexpressed relations was poor. For the most
traded stock of that period, British Petroleum, we note only one
underexpression persistent during all months analyzed in 2006.
Most of the overexpressions and underexpressions had a limited
persistence over time. The second set of data refers to the Stock-
holm venue of the Nasdaq OMX during 2010 to 2011. During
those years, both fragmentation (12) and high-frequency trading
were present in the market. The analysis of these sets of data
already shows a pronounced persistence of overexpressed and
underexpressed trading relationships. This is quite remarkable
when considering that we are able to track the pairwise rela-
tionships only in one venue and it suggests that our statistical
detection is providing a lower limit of the networked pairwise
relationships detected in the full market. We detect the presence
of persistent networked relationships between pairs of market
members since 2010 and we note that they become enhanced and
more persistent in 2018.

This result suggests a few considerations: 1) Today markets
are complex sociotechnical institutions operating daily with time
scales ranging from microseconds to tens of thousands of sec-
onds (see, for example, the probability density function of time
to fill of pairs of market members trading most liquid stocks
shown in Fig. 1). This means that time scales covering more than
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eight orders of magnitude are present in the market, probably
one of the broadest ranges of time scales observed daily in a
human institution. 2) Several HFTs are primarily acting as mar-
ket makers reducing the time to fill of all categories of investors
and providing liquidity in normal market conditions. However,
we observe robust statistical evidence that the liquidity of HFTs
is not provided in a way proportional to the trading interests
of investors acting in the market but rather HFTs selectively
direct a statistically sizable portion of their provided liquidity to
orders submitted by specific market members. This is achieved by
processing the accessible information (including book data dis-
tributed by different venues) (45-48) in a fast and competitive
way and by using this information for designing and performing
strategic trading decisions not accessible in practice to a large
number of market members.

The networked structure of modern financial markets indi-
cates that competition among market members acting as market
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makers is suboptimal and that there is room to propose and
explore regulatory constraints that could minimize the type and
degree of persistence of these networked relationships. Our
results show that the debate about the need for a careful investi-
gation of the basic aspect of trading of assets in a contemporary
financial market is timely and needed to ensure a fair and
efficient trading of financial assets (1, 5, 33, 49, 50).
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