61 research outputs found

    Delay-adjusted age- and sex-specific case fatality rates for COVID-19 in South Korea: Evolution in the estimated risk of mortality throughout the epidemic

    Full text link
    Objectives: The aim of this study was to estimate delay-adjusted case fatality rates (CFRs) for COVID-19 in South Korea, and evaluate how these estimates have evolved over time throughout the epidemic. Methods: Public data from the Korea Centers for Disease Control and Prevention (KCDC) were used to estimate age- and sex-specific CFRs for COVID-19 in South Korea up to June 12, 2020. We applied statistical methods previously developed to adjust for the delay between diagnosis and death, and presented both delay-adjusted and crude (unadjusted) CFRs throughout the epidemic. Results: The overall estimated delay-adjusted CFR was 2.39% (3.05% for males and 1.92% for females). Within each age strata where deaths were reported, males were found to have significantly higher CFRs than females. The estimated CFRs increased substantially from age 60 years in males and from 70 years in females. Both the delay-adjusted and crude CFRs were found to have evolved substantially, particularly early in the epidemic, converging only from mid-April 2020. Conclusions: The CFRs for South Korea provide an estimate of mortality risk in a setting where case ascertainment is likely to be more complete. The evolution in CFRs throughout the epidemic highlights the need for caution when interpreting CFRs calculated at a given time point

    Should cities hosting mass gatherings invest in public health surveillance and planning? Reflections from a decade of mass gatherings in Sydney, Australia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mass gatherings have been defined by the World Health Organisation as "events attended by a sufficient number of people to strain the planning and response resources of a community, state or nation". This paper explores the public health response to mass gatherings in Sydney, the factors that influenced the extent of deployment of resources and the utility of planning for mass gatherings as a preparedness exercise for other health emergencies.</p> <p>Discussion</p> <p>Not all mass gatherings of people require enhanced surveillance and additional response. The main drivers of extensive public health planning for mass gatherings reflect geographical spread, number of international visitors, event duration and political and religious considerations. In these instances, the implementation of a formal risk assessment prior to the event with ongoing daily review is important in identifying public health hazards.</p> <p>Developing and utilising event-specific surveillance to provide early-warning systems that address the specific risks identified through the risk assessment process are essential. The extent to which additional resources are required will vary and depend on the current level of surveillance infrastructure.</p> <p>Planning the public health response is the third step in preparing for mass gatherings. If the existing public health workforce has been regularly trained in emergency response procedures then far less effort and resources will be needed to prepare for each mass gathering event. The use of formal emergency management structures and co-location of surveillance and planning operational teams during events facilitates timely communication and action.</p> <p>Summary</p> <p>One-off mass gathering events can provide a catalyst for innovation and engagement and result in opportunities for ongoing public health planning, training and surveillance enhancements that outlasted each event.</p

    Relationship between the population incidence of febrile convulsions in young children in Sydney, Australia and seasonal epidemics of influenza and respiratory syncytial virus, 2003-2010: a time series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2010, intense focus was brought to bear on febrile convulsions in Australian children particularly in relation to influenza vaccination. Febrile convulsions are relatively common in infants and can lead to hospital admission and severe outcomes. We aimed to examine the relationships between the population incidence of febrile convulsions and influenza and respiratory syncytial virus (RSV) seasonal epidemics in children less than six years of age in Sydney Australia using routinely collected syndromic surveillance data and to assess the feasibility of using this data to predict increases in population rates of febrile convulsions.</p> <p>Methods</p> <p>Using two readily available sources of routinely collected administrative data; the NSW Emergency Department (ED) patient management database (1 January 2003 - 30 April 2010) and the Ambulance NSW dispatch database (1 July 2006 - 30 April 2010), we used semi-parametric generalized additive models (GAM) to determine the association between the population incidence rate of ED presentations and urgent ambulance dispatches for 'convulsions', and the population incidence rate of ED presentations for 'influenza-like illness' (ILI) and 'bronchiolitis' - proxy measures of influenza and RSV circulation, respectively.</p> <p>Results</p> <p>During the study period, when the weekly all-age population incidence of ED presentations for ILI increased by 1/100,000, the 0 to 6 year-old population incidence of ED presentations for convulsions increased by 6.7/100,000 (P < 0.0001) and that of ambulance calls for convulsions increased by 3.2/100,000 (P < 0.0001). The increase in convulsions occurred one week earlier relative to the ED increase in ILI. The relationship was weaker during the epidemic of pandemic (H1N1) 2009 influenza virus.</p> <p>When the 0 to 3 year-old population incidence of ED presentations for bronchiolitis increased by 1/100,000, the 0 to 6 year-old population incidence of ED presentations for convulsions increased by 0.01/100,000 (P < 0.01). We did not find a meaningful and statistically significant association between bronchiolitis and ambulance calls for convulsions.</p> <p>Conclusions</p> <p>Influenza seasonal epidemics are associated with a substantial and statistically significant increase in the population incidence of hospital attendances and ambulance dispatches for reported febrile convulsions in young children. Monitoring syndromic ED and ambulance data facilitates rapid surveillance of reported febrile convulsions at a population level.</p

    Potential for early warning of viral influenza activity in the community by monitoring clinical diagnoses of influenza in hospital emergency departments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although syndromic surveillance systems are gaining acceptance as useful tools in public health, doubts remain about whether the anticipated early warning benefits exist. Many assessments of this question do not adequately account for the confounding effects of autocorrelation and trend when comparing surveillance time series and few compare the syndromic data stream against a continuous laboratory-based standard. We used time series methods to assess whether monitoring of daily counts of Emergency Department (ED) visits assigned a clinical diagnosis of influenza could offer earlier warning of increased incidence of viral influenza in the population compared with surveillance of daily counts of positive influenza test results from laboratories.</p> <p>Methods</p> <p>For the five-year period 2001 to 2005, time series were assembled of ED visits assigned a provisional ED diagnosis of influenza and of laboratory-confirmed influenza cases in New South Wales (NSW), Australia. Poisson regression models were fitted to both time series to minimise the confounding effects of trend and autocorrelation and to control for other calendar influences. To assess the relative timeliness of the two series, cross-correlation analysis was performed on the model residuals. Modelling and cross-correlation analysis were repeated for each individual year.</p> <p>Results</p> <p>Using the full five-year time series, short-term changes in the ED time series were estimated to precede changes in the laboratory series by three days. For individual years, the estimate was between three and 18 days. The time advantage estimated for the individual years 2003–2005 was consistently between three and four days.</p> <p>Conclusion</p> <p>Monitoring time series of ED visits clinically diagnosed with influenza could potentially provide three days early warning compared with surveillance of laboratory-confirmed influenza. When current laboratory processing and reporting delays are taken into account this time advantage is even greater.</p

    Communicating population health statistics through graphs: a randomised controlled trial of graph design interventions

    Get PDF
    BACKGROUND: Australian epidemiologists have recognised that lay readers have difficulty understanding statistical graphs in reports on population health. This study aimed to provide evidence for graph design improvements that increase comprehension by non-experts. METHODS: This was a double-blind, randomised, controlled trial of graph-design interventions, conducted as a postal survey. Control and intervention participants were randomly selected from telephone directories of health system employees. Eligible participants were on duty at the listed location during the study period. Controls received a booklet of 12 graphs from original publications, and intervention participants received a booklet of the same graphs with design modifications. A questionnaire with 39 interpretation tasks was included with the booklet. Interventions were assessed using the ratio of the prevalence of correct responses given by the intervention group to those given by the control group for each task. RESULTS: The response rate from 543 eligible participants (261 intervention and 282 control) was 67%. The prevalence of correct answers in the control group ranged from 13% for a task requiring knowledge of an acronym to 97% for a task identifying the largest category in a pie chart. Interventions producing the greatest improvement in comprehension were: changing a pie chart to a bar graph (3.6-fold increase in correct point reading), changing the y axis of a graph so that the upward direction represented an increase (2.9-fold increase in correct judgement of trend direction), a footnote to explain an acronym (2.5-fold increase in knowledge of the acronym), and matching the y axis range of two adjacent graphs (two-fold increase in correct comparison of the relative difference in prevalence between two population subgroups). CONCLUSION: Profound population health messages can be lost through use of overly technical language and unfamiliar statistical measures. In our study, most participants did not understand age standardisation and confidence intervals. Inventive approaches are required to address this problem

    Detecting the start of an influenza outbreak using exponentially weighted moving average charts

    Get PDF
    Background. Influenza viruses cause seasonal outbreaks in temperate climates, usually during winter and early spring, and are endemic in tropical climates. The severity and length of influenza outbreaks vary from year to year. Quick and reliable detection of the start of an outbreak is needed to promote public health measures. Methods. We propose the use of an exponentially weighted moving average (EWMA) control chart of laboratory confirmed influenza counts to detect the start and end of influenza outbreaks. Results. The chart is shown to provide timely signals in an example application with seven years of data from Victoria, Australia. Conclusions. The EWMA control chart could be applied in other applications to quickly detect influenza outbreaks

    An outbreak of cardiovascular syndromes requiring urgent medical treatment and its association with environmental factors: an ecological study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In April 2005, syndromic surveillance based on statistical control chart methods in Sydney, Australia, signalled increasing incidence of urgent emergency department visits for cardiovascular and chest pain syndromes compared to the preceding twelve months. This paper aimed to determine whether environmental factors could have been responsible for this 'outbreak'.</p> <p>Methods</p> <p>The outcome studied was daily counts of emergency department visits for cardiovascular or chest pain syndromes that were considered immediately or imminently life threatening on arrival at hospital. The outbreak had a mean daily count of 5.7 visits sustained for eight weeks, compared with 4.0 in the same months in previous years. Poisson regression was used to systematically assess the emergency department visits in relation to available daily weather and pollution variables by first finding the best model that explained short-term variation in the outcome over the period 25 January 2002 to 31 May 2005, and then assessing interactions of all available variables with the 'outbreak' period, April-May 2005. Rate ratios were estimated for an interquartile increase in each variable meaning that the ratio measures the relative increase (or decrease) in the emergency department visits for an interquartile increase in the weather or pollution variable. The rate ratios for the outbreak period measure the relative increase (or decrease) in the emergency department visits for an interquartile increase in the weather or pollution variable during the outbreak period only.</p> <p>Results</p> <p>The best fitting model over the whole study period included minimum temperature with a rate ratio (RR) of 0.86 (95% confidence interval (CI), 0.77–0.96), maximum relative humidity of 1.09 (95% CI 1.05–1.14) and minimum daily particulate matter less than 10 microns (PM<sub>10</sub>) of 1.05 (95% CI, 1.01–1.09). During the outbreak period, maximum temperature (RR 1.27, 95% CI 1.03–1.57), solar radiation (RR 1.44, 95% CI, 1.00–2.07) and ozone (RR 1.13, 95% CI 1.01–1.26) were associated with the outcome.</p> <p>Conclusion</p> <p>The increase may have been associated with photochemical pollution. Syndromic surveillance can identify outbreaks of non-communicable diseases associated with environmental factors.</p

    Emergency department visits, ambulance calls, and mortality associated with an exceptional heat wave in Sydney, Australia, 2011: a time-series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>From January 30-February 6, 2011, New South Wales was affected by an exceptional heat wave, which broke numerous records. Near real-time Emergency Department (ED) and ambulance surveillance allowed rapid detection of an increase in the number of heat-related ED visits and ambulance calls during this period. The purpose of this study was to quantify the excess heat-related and all-cause ED visits and ambulance calls, and excess all-cause mortality, associated with the heat wave.</p> <p>Methods</p> <p>ED and ambulance data were obtained from surveillance and administrative databases, while mortality data were obtained from the state death registry. The observed counts were compared with the average counts from the same period from 2006/07 through 2009/10, and a Poisson regression model was constructed to calculate the number of excess ED visits, ambulance and deaths after adjusting for calendar and lag effects.</p> <p>Results</p> <p>During the heat wave there were 104 and 236 ED visits for heat effects and dehydration respectively, and 116 ambulance calls for heat exposure. From the regression model, all-cause ED visits increased by 2% (95% CI 1.01-1.03), all-cause ambulance calls increased by 14% (95% CI 1.11-1.16), and all-cause mortality increased by 13% (95% CI 1.06-1.22). Those aged 75 years and older had the highest excess rates of all outcomes.</p> <p>Conclusions</p> <p>The 2011 heat wave resulted in an increase in the number of ED visits and ambulance calls, especially in older persons, as well as an increase in all-cause mortality. Rapid surveillance systems provide markers of heat wave impacts that have fatal outcomes.</p
    corecore