17 research outputs found

    Scintillator-based diagnostic for fast ion loss measurements on DIII-D

    Get PDF
    A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response 100 kHz needed to study energetic ion losses induced by Alfvén eigenmodes and other MHD instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle and gyroradius of ion losses based on the position of the ions striking the two-dimensional scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed. © 2010 American Institute of Physics.U.S. Department of Energy DE-FC02-04ER54698, SC-G903402, DE-FG03-94ER5427

    Tomography of fast-ion velocity-space distributions from synthetic CTS and FIDA measurements

    Get PDF
    We compute tomographies of 2D fast-ion velocity distribution functions from synthetic collective Thomson scattering (CTS) and fast-ion D-alpha (FIDA) 1D measurements using a new reconstruction prescription. Contradicting conventional wisdom we demonstrate that one single 1D CTS or FIDA view suffices to compute accurate tomographies of arbitrary 2D functions under idealized conditions. Under simulated experimental conditions, single-view tomographies do not resemble the original fast-ion velocity distribution functions but nevertheless show their coarsest features. For CTS or FIDA systems with many simultaneous views on the same measurement volume, the resemblance improves with the number of available views, even if the resolution in each view is varied inversely proportional to the number of views, so that the total number of measurements in all views is the same. With a realistic four-view system, tomographies of a beam ion velocity distribution function at ASDEX Upgrade reproduce the general shape of the function and the location of the maxima at full and half injection energy of the beam ions. By applying our method to real many-view CTS or FIDA measurements, one could determine tomographies of 2D fast-ion velocity distribution functions experimentally

    Combination of fast-ion diagnostics in velocity-space tomographies:Paper

    Get PDF
    Fast-ion Dα (FIDA) and collective Thomson scattering (CTS) diagnostics provide indirect measurements of fastion velocity distribution functions in magnetically confined plasmas. Here we present the first prescription for velocity-space tomographic inversion of CTS and FIDA measurements that can use CTS and FIDA measurements together and that takes uncertainties in such measurements into account. Our prescription is general and could be applied to other diagnostics. We demonstrate tomographic reconstructions of an ASDEX Upgrade beam ion velocity distribution function. First, we compute synthetic measurements from two CTS views and two FIDA views using a TRANSP/NUBEAM simulation, and then we compute joint tomographic inversions in velocity-space from these. The overall shape of the 2D velocity distribution function and the location of the maxima at full and half beam injection energy are well reproduced in velocity-space tomographic inversions, if the noise level in the measurements is below 10%. Our results suggest that 2D fast-ion velocity distribution functions can be directly inferred from fast-ion measurements and their uncertainties, even if the measurements are taken with different diagnostic methods

    Phase-locking of magnetic islands diagnosed by ECE-imaging

    No full text
    Millimeter-wave imaging diagnostics identify phase-locking and the satisfaction of 3-wave coupling selection criteria among multiple magnetic island chains by providing a localized, internal measurement of the 2D power spectral density, S(ω, k pol ). In high-confinement tokamak discharges, these interactions impact both plasma rotation and tearing stability. Nonlinear coupling among neoclassical tearing modes of different n-number, with islands not satisfying the poloidal mode number selection criterion ⟹m, m â€Č, m − m â€Č⟩, contributes to a reduction in core rotation and flow shear in the vicinity of the modes

    Far-infrared tangential interferometer/polarimeter design and installation for NSTX-U

    No full text
    The Far-infrared Tangential Interferometer/Polarimeter (FIReTIP) system has been refurbished and is being reinstalled on the National Spherical Torus Experiment-Upgrade (NSTX-U) to supply real-time line-integrated core electron density measurements for use in the NSTX-U plasma control system (PCS) to facilitate real-time density feedback control of the NSTX-U plasma. Inclusion of a visible light heterodyne interferometer in the FIReTIP system allows for real-time vibration compensation due to movement of an internally mounted retroreflector and the FIReTIP front-end optics. Real-time signal correction is achieved through use of a National Instruments CompactRIO field-programmable gate array.readme, data file

    On the application of electron cyclotron emission imaging to the validation of theoretical models of magnetohydrodynamic activity

    No full text
    Two-dimensional (2D) imaging of electron temperature perturbations provides a powerful constraint for validating theoretical models describing magnetohydrodynamic plasma behavior. In observation of Alfven wave induced temperature fluctuations, electron cyclotron emission imaging provides unambiguous determination of the 2D eigenmode structure. This has provided support for nonperturbative eigenmode solvers which predict symmetry breaking due to poloidal flows in the fast ion population. It is shown that for Alfven eigenmodes, and in cases where convective flows or saturated perturbations lead to nonaxisymmetric equilibria, electron plasma displacements oriented parallel to a gradient in mean temperature are well defined. Furthermore, during highly dynamic behavior, such as the sawtooth crash, highly resolved 2D temperature behaviors yield valuable insight. In particular, addressing the role of adiabatic heating on time scales much shorter than the resistive diffusion time through the additional diagnosis of local electron density allows progress to be made toward a comprehensive understanding of fast reconnection in tokamak plasmas. (C) 2011 American Institute of Physics

    On the application of electron cyclotron emission imaging to the validation of theoretical models of magnetohydrodynamic activity

    No full text
    Two-dimensional (2D) imaging of electron temperature perturbations provides a powerful constraint for validating theoretical models describing magnetohydrodynamic plasma behavior. In observation of Alfvén wave induced temperature fluctuations, electron cyclotron emission imaging provides unambiguous determination of the 2D eigenmode structure. This has provided support for nonperturbative eigenmode solvers which predict symmetry breaking due to poloidal flows in the fast ion population. It is shown that for Alfvén eigenmodes, and in cases where convective flows or saturated perturbations lead to nonaxisymmetric equilibria, electron plasma displacements oriented parallel to a gradient in mean temperature are well defined. Furthermore, during highly dynamic behavior, such as the sawtooth crash, highly resolved 2D temperature behaviors yield valuable insight. In particular, addressing the role of adiabatic heating on time scales much shorter than the resistive diffusion time through the additional diagnosis of local electron density allows progress to be made toward a comprehensive understanding of fast reconnection in tokamak plasmas

    Experimental measurements of ion cyclotron range of frequency minority-heated fast-ion distributions on Alcator C-Mod

    No full text
    Ion cyclotron resonance heating is the primary auxiliary heating on the Alcator C-Mod tokamak and is commonly used on other devices, and is planned for use on ITER. The RF-power density on C-Mod is above 5 MW m−3 providing for a unique opportunity to study wave–particle effects in the high RF power per particle regime. Minority heating produces a highly energetic tail in the minority distribution function which is measured using a compact neutral particle analyser. In this paper, we present the measurements of the fast-ion spectrum between 200 and 2 MeV, compiled over an entire experimental campaign. We also estimate the effective tail temperatures for the fast-ion distribution. We find that the fast-ion distribution is less energetic and less dense with increasing electron density; is more energetic with increasing plasma current; and is more dense but has no measurable change in energy with increasing RF power. Some possible explanations for these findings are discussed.United States. Dept. of Energy (Award DE-FC02-99ER54512
    corecore