21 research outputs found

    Nitric Oxide: Properties And Therapeutic Use [Ă“xido NĂ­trico: Propriedades E Potenciais Usos TerapĂŞuticos]

    No full text
    Nitric oxide (•NO) is a substance that acts as a second-messenger and is associated with a number of important physiological functions such as regulation of the vascular tonus, immune modulation and neurotransmission. As a physiological mediator, alteration of its concentration level may cause pathophysiological disfunctions such as hypertension, septic shock and impotence. Possible therapeutic approaches are being developed to control NO levels in vivo. We review herein the main physical and chemical properties of •NO, its biological functions and available chemical interventions to reduce and increment its physiological concentration levels. Recent developments in the field are also highlighted.28610461054http://www.nobel.se/nobel/alfred-nobel/biographical/ringertzFurchgott, R.F., (1999) Angew. Chem., Int. Ed., 38, p. 1870Ignarro, L.J., (1999) Angew. Chem., Int. Ed., 38, p. 1882Murad, F., (1999) Angew. Chem., Int. Ed., 38, p. 1856Thomas, G., (2000) Medicinal Chemistry, 1st Ed., pp. 431-464. , John Wiley & Sons, cap. 11Shaw, A.W., Vosper, A.J., (1977) J. Chem. Soc. Faraday Trans., 8, p. 1239Kerwin, J.F., Lancaster, J.R., Feldman, P.L., (1995) J. Med. Chem., 38, p. 4343Ignarro, L.J., (1990) Annu. Rev. Pharmacol. Toxicol., 30, p. 535Wink, D.A., Darbyshire, J.F., Nims, R.W., Saavedra, J.E., Ford, P.C., (1993) Chem. Res. Toxicol., 6, p. 23Ridd, J.H., (1961) Chem. Rev., 15, p. 418Gatti, R.M., Radi, R., Augusto, O., (1994) FEBS Lett., 348, p. 287King, P.A., Jamison, E., Strahs, D., Anderson, V.E., Brenowitz, M., (1993) Nucleic Acids Res., 21, p. 2473McCleverty, J.A., (1979) Chem. Rev., 79, p. 53Greengard, P., (1975) Adv. Cyclic Nucleotide Res., 5, p. 585Appleman, M., Terasaki, W., (1975) Adv. Cyclic Nucleotide Res., 5, p. 153Furchgott, R.F., Zawadzki, J.V., (1981) Nature, 288, p. 373Hibbs, J.B., (1991) Res. Immunol., 142, p. 565Shibuki, K., (1994) Biomed. Res., 15, p. 65Dawson, D.A., (1994) Cerebrovasc. Brain Metab. Rev., 6, p. 299Mulligan, M.S., Hevel, J.M., Marletta, M.A., Ward, P.A., (1991) Proc. Natl. Acad. Sci. U.S.A., 88, p. 6338Klabunde, R.E., Ritger, R.C., Helgren, M.C., (1991) Eur. J. Pharmacol., 199, p. 51Marletta, M.A., (1993) J. Biol. Chem., 268, p. 12231Stuehr, D.J., Griffith, O.W., (1992) Adv. Enzymol. Relat. Areas Mol. Biol., 65, p. 287Abu-Soud, H.M., Stuehr, D.J., (1993) Proc. Natl. Acad. Sci. U.S.A., 90, p. 10769Crane, B.R., Arvai, A.S., Ghosh, D.K., Wu, C., Getzoff, E.D., Stuehr, D.J., Tainer, J.A., (1998) Science, 279, p. 2121Li, H., Raman, C.S., Gloser, L.B., Blasko, E., Young, T.A., Parkison, J.F., Whitlow, M., Poulos, T.L., (1999) J. Biol. Chem., 274, p. 21276Li, H., Raman, C.S., Martásek, P., Marters, B.S.S., Poulos, T.L., (2001) Biochemistry, 40, p. 5399Kikelj, D., Peterlin-Masic, L., (2001) Tetrahedron, 57, p. 7073Marletta, M.A., (1994) J. Med. Chem., 37, p. 1899Furfine, E.S., Harmon, M.F., Paith, J.E., Garvey, E.P., (1993) Biochemistry, 32, p. 8512Moore, W.M., Webber, R.K., Jerome, G.M., Tjoeny, F.S., Misko, T.P., Currie, M.G., (1994) J. Med. Chem., 37, p. 3886Garvey, E.R., Oplinger, J.A., Furfine, E.S., Kiff, R.J., Lazlo, F., Nhittle, B.J.R., Knowles, R.G., (1997) J. Biol. Chem., 272, p. 4959Silverman, R.B., Zhang, H.Q., Fast, W., Marletta, M.A., Martásek, P., (1997) J. Med. Chem., 40, p. 3869Silverman, R.B., Roman, L.J., Martásek, P., Huang, H., (2000) J. Med. Chem., 43, p. 2938Wang, P.G., Jia, Q., Cai, T., Huang, M., Li, H., Xian, M., Poulos, T.L., (2003) J. Med. Chem., 46, p. 2271Tinker, A.C., Beaton, H.G., Smith, N.B., Cook, T.R., Cooper, S.L., Rae, L.F., Hallon, K., Wallace, A.V., (2003) J. Med. Chem., 46, p. 913Hallinan, E.A., Tsymbalov, S., Dorn, C.R., Pitzele, B.S., Hansen, D.W., (2002) J. Med. Chem., 45, p. 1686Shearer, B.G., Lee, S., Franzmann, K.W., White, H.A.R., Sanders, D.C.J., Kiff, R.J., Garvey, E.P., Furfine, E.S., (1997) Bioorg. Med. Chem. Lett., 7, p. 1763Lajoie, G.A., Fishlock, D., Perdicakis, B., Montgomery, H.J., Guillemette, J.G., Jervis, E., (2003) Bioorg. Med. Chem., 11, p. 869Engh, R., Konetschnyrapp, S., Krell, H., Martin, U., Tsaklakidis, C., WO Patent Appl. 1997, 9, 721King, S.B., Atkinson, R.N., Moore, L., Tobin, J., (1999) J. Org. Chem., 64, p. 3467Wang, P.G., Xian, M., Tang, X., Wu, X., Wen, Z., Gai, T., Janczuk, A.J., (2002) Chem. Rev., 102, p. 1091Honeyman, J., Morgan, J.W., (1957) Adv. Carbohydr. Chem., 12, p. 117Baker, J.W., Easty, P.M., (1952) J. Chem. Soc., p. 1208Capellos, L., Fisco, W.J., Ribaudo, C., Hogan, V.D., Campisi, F.X., Castorina, T.C., Rosenblat, D.H., (1984) Int. J. Chem. Kinet., 16, p. 1009Jugdutt, B.I., (1992) Am. J. Med., 70, p. 82Leir, C.V., Bombach, D., Thompson, M.J., Cattaneo, S.M., Goldberg, R.J., Unverferth, D.V., (1981) Am. J. Cardiol., 48, p. 1115Tander, B., Guven, A., Demirbag, S., Ozkan, Y., Ozturk, H., Cetinkursun, S., (1999) J. Pediatr. Surg., 34, p. 1810De May, C., (1998) Curr. Med. Opin., 14, p. 187Nakatsuka, M., Tada, K., Kimura, Y., Asagiri, K., Kamada, Y., Takata, M., Nakata, T., Kudo, T., (1999) Gynecol. Obst. Invest., 47, p. 13Osinki, M.T., Rauch, B.H., Schror, K., (2001) Mol. Pharmacol., 59, p. 1044Haatcher, G.R.J., Weldon, H., (1998) Chem. Soc. Rev., 27, p. 331Ahlner, J., Andersson, R.G., Torfgard, K., Axelsson, K.L., (1991) Pharmacol. Rev., 43, p. 351Seth, P., Funy, H.L., (1993) Biochem. Pharmacol., 46, p. 1486Chang, S., Fung, H.L., (1991) Biochem. Pharmacol., 42, p. 1433Baker, J.W., Heggs, T.G., (1954) Chem. Ind., p. 464Thacher, G.R.J., Zavorin, S.I., Artz, J.D., Dumitrasw, A., Nicolescu, A., Scutaru, D., Smith, S.V., (2001) Org. Lett., 3, p. 1113Goulart, M.O.F., Abreu, F.C., Lopes, A.O., Pereira, M.A., De Simone, C.A., (2002) Tetrahedron Lett., 43, p. 8153Marini, G., Pozzoli, C., Coruzzi, G., (2000) Helv. Chim. Acta, 83, p. 287Momi, S., Emerson, M., Paul, W., Leone, M., Mezassoma, A.M., Del Soldato, P., Page, C.P., Gresele, P., (2000) Eur. J. Pharmacol., 397, p. 177CAL Int., Patent WO 94/03421, 1994Gasco, A., Ceva, C., Lolli, M.L., Lazzarato, L., Guaiata, E., Morini, G., Corozzi, G., Frutero, R., (2003) J. Med. Chem., 46, p. 747Wallace, J.L., Del Soldato, P., Cirino, G., Muscarà, M.N., (1999) Drugs, 2, p. 321Pelegata, S., Italia, A., Villa, M., Palmisance, G., Lesma, G., (1985) Synthesis, p. 517Farmer, P.J., Sulc, F., Immoos, C.E., Pervitsky, D., (2004) J. Am. Chem. Soc., 126, p. 1096Kass, D.A., Paolocci, N., (2003) Proc. Natl. Acad. Sci. U.S.A., 100, p. 5537Zorzetto, R., (2003) Pesquisa FAPESP, 84, p. 3

    Neutrophils And Mononuclear Cells From Patients With Chronic Granulomatous Disease Release Nitric Oxide

    No full text
    Chronic granulomatous disease (CGD) is a group of genetic disorders characterised by recurrent severe suppurative infections due to impaired microbial killing. The principal biochemical defect is an impairment in the production of reactive oxygen intermediates by phagocytes. Nitric oxide (NO) is synthesised from the guanidino nitrogen atom(s) of L-arginine and has recently been proposed to be involved in defence mechanisms. The aim of this study was to investigate the involvement of the oxidative burst in the biosynthesis of NO by neutrophils and mononuclear cells from patients with CGD. NO synthesis was assayed by the ability of neutrophils and mononuclear cells to inhibit thrombin-induced washed platelet aggregation while superoxide anion (O2-) production was measured spectrophotometrically by the superoxide dismutase inhibitable reduction of cytochrome c. Neutrophils and mononuclear cells from patients with CGD released NO. This release was inhibited by nitro-L-arginine methyl ester but could be reversed by L-arginine. Zymosan- and PMA-induced O2- production was less than 10% as compared with health controls. These results indicate that O2- production is not essential for NO synthesis in human leucocytes.35548549

    Bioequivalence Study Of Two Enalapril Maleate Tablet Formulations In Healthy Male Volunteers: Pharmacokinetic Versus Pharmacodynamic Approach

    No full text
    Objective: Two different conventional release enalapril maleate tablet formulations were evaluated for their relative bioavailability (Eupressin tablets 10 mg, Biosintetica as the test formulation vs Renitec tablets 10 mg Merck Sharp and Dhome, as the reference formulation). A single 20 mg oral dose of each preparation was administered to 18 healthy male adult volunteers and their bioequivalence was assessed by comparing the serum enalaprilat and total enalapril (enalaprilat plus enalapril maleate) concentration-time curves. Angiotensin converting enzyme (ACE) activity was also quantified in each serum sample. Results: The pharmacokinetic parameters obtained for each formulation were the area under the time-concentration curve from 0 to 24 h (AUC[0-24]), maximum concentration C(max) and the time at which it occurred (t(max)). When serum enalaprilat concentration-time curves were employed to assess bioequivalence, the formulations were bioequivalent in the extent but not in the rate of absorption. However, no difference in either the extent or the rate of absorption were observed when serum total enalapril vs time curves were analysed. ACE activity-time curves were similar for both formulations and showed that ACE was 90% inhibited 3-5 h after enalapril administration, and till approximately 50% after 24 h. At that time, circulating enalaprilat and total enalapril levels were less than the tenth of C(max). Conclusion: The results show that complete bioequivalence of the two formulations can be concluded from serum total enalapril concentration data, and that serum ACE activity is not a suitable pharmacodynamic variable for assessing bioequivalence.505399405Todd, P.A., Goal, K.I., Enalapril: A reappraisal of its pharmacology and therapeutic use in hypertension (1992) Drugs, 43, pp. 346-383Todd, P.A., Heel, R.C., Enalapril: A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension and congestive heart failure (1986) Drugs, 31, pp. 198-248Ferguson, R.K., Vlasses, P.H., Swanson, B.N., Mojaverian, P., Hichens, M., Effects of enalapril, a new converting enzyme inhibitor, in hypertension (1982) Clin Pharmacol Ther, 32, pp. 48-53Sánchez, R.A., Marcó, E., Gilbert, H.B., Raffaele, P., Brito, M., Moledo, L.I., Natriuretic effect and changes in renal haemodynamics induced by enalapril in essential hypertension (1985) Drugs, 30 (1 SUPPL.), pp. 49-58Sánchez, R.A., Ramírez, A.J., Muscará, M.N., Gilbert, H.B., Marcó, E., Moledo, L.I., Inhibitory effects of enalapril on serum aldosterone in essential hypertension (1987) Medicina (Bs. As.), 47, pp. 256-260Sybertz, E.J., Baum, T., Ahn, H.S., Nelson, S., Eynon, E., Angiotensin converting enzime inhibitor activity of SCH 31846, a new non-sulfhydryl inhibitor (1983) J Cardiovasc Pharmacol, 5, pp. 643-654Hui, S.C.G., Dai, S., Ogle, C.W., Potentiation of depressor responses to arachidonic acid by angiotensin converting enzyme inhibitors in the rat (1984) Clin Exp Pharmacol Physiol, 11, pp. 621-625Patchett, A.A., Harris, E., Tristram, E.W., Wyavratt, M.J., Wu, M.T., Taub, D., Peterson, E.R., Stone, C.A., A new class of angiotensin-converting enzyme inhibitors (1980) Nature, 288, pp. 280-283Kelly, J.G., O'Malley, K., Clinical pharmacokinetics of the newer ACE inhibitors, a review (1990) Clin Pharmacokinet, 19, pp. 177-196MacFadyen, R.J., Meredith, P.A., Elliot, H.L., Enalapril clinical pharmacokinetics and pharmacokinetic-pharmacodynamic relationships (1993) Clin Pharmacokinet, 25, pp. 274-282Donelly, R., Meredith, P.A., Elliot, H.L., Reid, J.L., Kineticdynamic relations and individual responses to enalapril (1990) Hypertension, 15, pp. 301-309Weisser, K., Schloos, J., Lehmann, K., Düsing, R., Vetter, H., Mutschler, E., Pharmacokinetics and converting enzyme inhibition after morning and evening administration of oral enalapril to healthy subjects (1991) Eur J Clin Pharmacol, 40, pp. 95-99Witte, K., Weisser, K., Neubeck, M., Mutschler, E., Lehman, K., Hopf, R., Lemmer, B., Cardiovascular effects, pharmacokinetics and converting enzyme inhibition of enalapril after morning versus evening administration (1993) Clin Pharmacol Ther, 54, pp. 177-186Dzau, V.J., Circulation versus local renin-angiotensin system in cardiovascular homeostasis (1988) Circulation, 77 (1 SUPPL.), pp. 11-14Falkenhahn, M., Gohlke, P., Paul, M., Stoll, M., Unger, T., The renin-angiotensin system in the heart and vascular wall: New therapeutic aspects (1994) J Cardiovasc Pharmacol, 24, pp. S6-S13Hichens, M., Hand, E.L., Mulcahy, W.S., Radioimmunoassay for angiotensin converting enzyme inhibitors (1981) Ligand Q, 4, p. 43Cushman, D.W., Cheung, H.S., Spectrophotometric assay and properties of the ACE of rabbit lung (1970) Biochem Pharmacol, 20, pp. 1637-1648Hurst, P.L., Lovell-Smith, C.J., Optimized assay for serum ACE activity (1981) Clin Chem, 27, pp. 2048-2052Hauschke, D., Steinijans, V.W., Diletti, E., A distribution-free procedure for the statistical analysis of bioequivalence studies (1990) Int J Clin Pharmacol Ther Toxicol, 28, pp. 72-78(1985) Bioavailability and Bioequivalence Requirements, (320 PART), pp. 154-173. , Food and Drug Administration, 4-1- Edition. Federal RegisterIn vivo bioequivalence guidances (1993) Pharmacopeial Forum, 19, pp. 6501-6508Larmour, I., Jackson, B., Cubela, R., Johnston, C.I., Enalapril (MK421) activation in man: Importance of liver status (1985) Br J Clin Pharmacol, 19, pp. 701-704Ohnishi, A., Tsuboi, Y., Ishizaki, T., Kubota, K., Ohno, T., Yoshida, H., Kanezaki, A., Tanaka, T., Kinetics and dynamics of enalapril in patients with liver cirrhosis (1989) Clin Pharmacol Ther, 45, pp. 657-66

    Daily Cycling Of Nitric Oxide Synthase (nos) In The Hippocampus Of Pigeons (c. Livia)

    No full text
    Background: Nitric oxide synthase (NOS) is essential for the synthesis of nitric oxide (NO), a non-conventional neurotransmitter with an important role in synaptic plasticity underlying processes of hippocampus-dependent memory and in the regulation of biological clocks and circadian rhythms. Many studies have shown that both the NOS cytosolic protein content and its enzymatic activity present a circadian variation in different regions of the rodent brain, including the hippocampus. The present study investigated the daily variation of NOS enzymatic activity and the cytosolic content of nNOS in the hippocampus of pigeons. Results: Adult pigeons kept under a skeleton photoperiod were assigned to six different groups. Homogenates of the hippocampus obtained at six different times-of-day were used for NOS analyses. Both iNOS activity and nNOS cytosolic protein concentrations were highest during the subjective light phase and lowest in the subjective dark phase of the circadian period. ANOVA showed significant time differences for iNOS enzymatic activity (p < 0.05) and for nNOS protein content (p < 0.05) in the hippocampus. A significant daily rhythm for both iNOS and nNOS was confirmed by analysis with the Cosinor method (p < 0.05). The present findings indicate that the enzymatic activity of iNOS and content of nNOS protein in the hippocampus of pigeons exhibit a daily rhythm, with acrophase values occurring during the behavioral activity phase. Conclusions: The data corroborate the reports on circadian variation of NOS in the mammalian hippocampus and can be considered indicative of a dynamic interaction between hippocampus-dependent processes and circadian clock mechanisms. © 2013 Machado-Nils et al.; licensee BioMed Central Ltd.111Golombek, D.A., Agostino, P.V., Plano, S.A., Ferreyra, G.A., Signaling in the mammalian circadian clock: the NO/cGMP pathways (2004) Neurochem Int, 45, pp. 929-936. , 10.1016/j.neuint.2004.03.023, 15312987Brendt, D.S., Hwang, P.M., Snyder, S.H., Localization of nitric oxide synthase indicating a neural role of nitric oxide (1990) Nature, 347, pp. 768-770. , 10.1038/347768a0, 1700301Salter, M., Knowles, R.G., Moncada, S., Widespread tissue distribution, species distribution and changes in activity of Ca(2+)-dependent and Ca(2+)-independent nitric oxide synthases (1991) FEBS lett, 291 (1), pp. 145-149. , 10.1016/0014-5793(91)81123-P, 1718778Brendt, D.S., Snyder, S.H., Nitric oxide mediates glutamate-linked enhancement of cGMP levels in the cerebellum (1989) PNAS, 89, pp. 9030-9033Garthwaite, J., Glutamate, nitric oxide and cell-cell signalling in the nervous system (1991) Trends Neurosci, 14, pp. 60-67. , 10.1016/0166-2236(91)90022-M, 1708538Choi, Y.B., Tenneti, L., Le, D.A., Ortiz, J., Bai, G., Chen, H.S., Lipton, S.A., Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation (2000) Nat Neurosci, 3, pp. 15-21. , 10.1038/71090, 10607390Micheva, K.D., Holz, R.W., Smith, S.J., Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity (2001) J Cell Biol, 154, pp. 355-368. , 10.1083/jcb.200102098, 2150764, 11470824Ayers, N.A., Kapás, L., Krueger, J.M., Circadian variation of nitric oxide synthase activity and cytosolic protein levels in rat brain (1996) Brain Res, 707, pp. 127-130. , 10.1016/0006-8993(95)01362-8, 8866722Tunçtan, B., Weigl, Y., Dotan, A., Peleg, L., Zengil, H., Ashkenazi, I., Abacioclu, N., Circadian variation of nitric oxide synthase activity in mouse tissue (2002) Chronobiol Int, 19 (2), pp. 393-404. , 10.1081/CBI-120002915, 12025932Rogers, L.J., The molecular neurobiology of early learning, development, and sensitive periods, with emphasis on the avian brain (1993) Mol Neurobiol, 7 (3-4), pp. 161-187Székely, A.D., The avian hippocampal formation: subdivisions and connectivity (1999) Behav brain Res, 98 (2), pp. 219-225. , 10.1016/S0166-4328(98)00087-4, 10683110Rosinha, M.U., Ferrari, E.A.M., Toledo, C.A., Immunohistochemical distribution of AMPA-type label in the pigeon (C. livia) hippocampus (2009) Neuroscience, 159 (2), pp. 438-450. , 10.1016/j.neuroscience.2009.01.010, 19174185Cui, Z., Wang, H., Tan, Y., Zaia, K.A., Zhang, S., Tsien, J.Z., Inducible and reversible NR1 knockout reveals crucial roles of the NMDA receptor preserving in remote memories in the brain (2004) Neuron, 41 (5), pp. 781-793. , 10.1016/S0896-6273(04)00072-8, 15003177Lee, A.K., Wilson, M.A., Memory of sequential experience in the hippocampus during slow wave sleep (2002) Neuron, 36, pp. 1183-1194. , 10.1016/S0896-6273(02)01096-6, 12495631Eckel-Mahan, K.L., Phant, T., Han, S., Wang, H., Chan, G.C.-K., Scheiner, Z.S., Storm, D.R., Circadian oscillation of hippocampal MAPK activity and cAMP: implications of memory persistence (2008) Nat Neurosci, 11, pp. 1074-1082. , 10.1038/nn.2174, 2772165, 19160506Phan, T.X., Chan, G.C., Sindreu, C.B., Eckel-Mahan, K.L., Storm, D.R., The diurnal oscillation of MAP (mitogen-activated protein) kinase and adenylyl cyclase activities in the hippocampus depends on the suprachiasmatic nucleus (2011) J Neurosci, 31 (29), pp. 10640-10647Böhme, G.A., Bon, C., Stutzmann, J.M., Doble, A., Blanchard, J.C., Possible involvement of nitric oxide in long-term potentiation (1991) Eur J Pharmacol, 199, pp. 379-381. , 10.1016/0014-2999(91)90505-K, 1915585O'Dell, T.J., Hawkins, R.D., Kandel, E.R., Arancio, O., Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger (1991) Proc Natl Acad Sci U S A, 88, pp. 11285-11289. , 10.1073/pnas.88.24.11285, 53119, 1684863Doyle, C., Hölscher, C., Rowan, M.J., Anwyl, R., The selective neuronal NO synthase inhibitor 7-nitro-indazole blocks both long-term potentiation and depotentiation of field EPSPs in rat hippocampal CA1 in vivo (1996) J Neurosci, 16 (1), pp. 418-424Gwinner, E., Hau, M., Heigl, S., Melatonin: generation and modulation of avian circadian rhythms (1997) Brain Res Bull, 44 (4), pp. 439-444. , 10.1016/S0361-9230(97)00224-4, 9370209Nichelmann, M., Höchel, J., Tzschentke, B., Biological rhythms in birds-development, insights and perspectives (1999) Comp Biochem Physiol A Mol Integr Physiol, 124 (4), pp. 429-437. , 10.1016/S1095-6433(99)00135-X, 10682241Oishi, T., Yamao, M., Kondo, C., Haida, Y., Masuda, A., Tamotsu, S., Multiphotoreceptor and multioscillator system in avian circadian organization (2001) Microsc Res Tech, 53 (1), pp. 43-47. , 10.1002/jemt.1067, 11279669Cassone, V.M., Paulose, J.K., Whitfield-Rucker, M.G., Peters, J.L., Time's arrow flies like a bird: two paradoxes for avian circadian biology (2009) Gen Comp Endocrinol, 163 (1-2), pp. 109-116. , 2710421, 19523398Rashotte, M.E., Basco, P.S., Henderson, R.P., Daily cycles in body temperature, metabolic rate, and substrate utilization in pigeons: influence of amount and timing of food consumption (1995) Physiol & Behav, 57 (4), pp. 731-746. , 10.1016/0031-9384(94)00315-7, 7777611Basco, P.S., Rashotte, M.E., Stephan, F.K., Photoperiod duration and energy balance in the pigeon (1996) Physiol & Behav, 60 (1), pp. 151-159. , 10.1016/0031-9384(95)02238-4, 8804656Rashotte, M.E., Saarela, S., Henderson, R.P., Hohtola, E., Shivering and digestion-related themogenesis in pigeons during dark phase (1999) Am J Physiol Regul Integr Comp Physiol, 277, pp. R1579-R1587Wu, W.Q., McGoogan, J.M., Cassone, V.M., Circadian regulation of visually evoked potentials in the domestic pigeon, Columba livia (2000) J Biol Rhythms, 15, pp. 317-328. , 10.1177/074873000129001422, 10942263Siqueira, L.O., Vieira, A.S., Ferrari, E.A.M., Time-of-day variation in the sensitization of the acoustic response in pigeons (2005) Biol Rhythm Res, 36 (1-2), pp. 151-157Valentinuzzi, V.S., Ferrari, E.A.M., Habituation to sound during morning and night sessions in pigeons (Columba livia) (1997) Physiol and Behav, 62 (6), pp. 1203-1209Herold, C., Diekamp, B., Güntürkün, O., Stimulation of dopamine D1 receptors in the avian fronto-striatal system adjusts daily cognitive fluctuations (2008) Behav Brain Res, 194, pp. 223-229. , 10.1016/j.bbr.2008.07.017, 18692527Petruso, E.J., Fuchs, T., Bingman, V.P., Time-space learning in homing pigeons (Columba livia): orientation to an artificial light source (2007) Anim cogn., 10, pp. 181-188. , 10.1007/s10071-006-0057-0, 17160343Karten, H.J., Hodos, W., (1967) A stereotaxic atlas of the brain of the pigeon (Columba livia), , Baltimore, Maryland: The Johns Hopkins PressFaria, M.S., Muscará, M.N., Moreno-Júnior, H., Teixeira, S.A., Dias, H.B., De Oliveira, B., Graeff, F.G., De Nucci, G., Acute inhibition of nitric oxide synthesis induces anxiolysis in the plus maze test (1997) Eur J Pharmacol, 323 (1), pp. 37-43. , 10.1016/S0014-2999(97)00027-7, 9105874Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye biding (1976) Anal Biochem, 72, pp. 248-254. , 10.1016/0003-2697(76)90527-3, 942051Laemmli, U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4 (1970) Nature, 227 (5259), pp. 680-685. , 10.1038/227680a0, 5432063Towbin, H., Staehelin, T., Gordon, J., Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications (1979) Proc Natl Acad Sci U S A, 76 (9), pp. 4350-4354. , 10.1073/pnas.76.9.4350, 411572, 388439Romero-Calvo, I., Ocón, B., Martinéz-Moya, P., Suaréz, M.D., Zarzuelo, A., Martinéz-Augustin, O., Medina, F.S., Reversible Ponceau staining as a loading control alternative to actin in Western Blots (2010) Anal Biochem, 401 (2), pp. 318-320. , 10.1016/j.ab.2010.02.036, 20206115Nelson, W., Tong, Y.L., Lee, J.K., Halberg, F., Methods for Cosinor Rhythmometry (1979) Chronobiologia, 6, pp. 305-323Benedito-Silva, A.A., Cosana: uma versão atualizada do Cosina para microcomputador de 16 bits [abstract] (1988) III Reunião Anual da Federação das Sociedades de Biologia Experimental, 1988, Caxambu, p. 46. , Caxambu: Caxambu. Programa e Resumos da III Reunião annual da federação das sociedades de biologia experimentalRefinetti, R., Cornélissen, G., Halberg, F., Procedures for numerical analysis of circadian rhythms (2007) Biol Rhythm Res, 38 (4), pp. 275-325. , 10.1080/09291010600903692, 3663600, 23710111Garthwaite, J., Boulton, C.L., Nitric oxide signaling in the central nervous system (1995) Annu Rev Physiol, 57, pp. 683-706. , 10.1146/annurev.ph.57.030195.003343, 7539993Monaghan, D.T., Cotman, C.W., Distribution of N-Methyl-D-aspartate-sensitive L-[3H] Glutamate-binding Sites in Rat Brain (1985) J Neuroscience, 5 (11), pp. 2909-2919Agostino, P.V., Plano, A.S., Golombek, D.A., Sildenafil acselerates reentrement of circadian rhythms after advancing light schedules (2007) PNAS, 104 (23), pp. 9834-9839. , 10.1073/pnas.0703388104, 1887561, 17519328Plano, S.A., Agostino, P.V., Golombek, D.A., Extracellular nitric oxide signaling in the hamster biological clock (2007) FEBS letters, 581, pp. 5500-5504. , 10.1016/j.febslet.2007.10.058, 17991439Von Gall, C., Stehle, J.H., Weaver, D.R., Mammalian melatonin receptors: molecular biology and signal transduction (2002) Cell Tissue Res, 309, pp. 151-162. , 10.1007/s00441-002-0581-4, 12111545Wang, L.M., Suthana, N.A., Chaudhury, D., Weaver, D.R., Colwell, C.S., Melatonin inhibits hippocampal long-term potentiation (2005) Eur J Neurosci, 22 (9), pp. 2231-2237. , 10.1111/j.1460-9568.2005.04408.x, 2581482, 16262661Yamanaka, Y., Suzuki, Y., Todo, T., Honma, K., Honma, S., Loss of circadian rhythm and light-induced suppression of pineal melatonin levels in Cry1 and Cry2 double-deficient mice (2010) Genes Cell, 15 (10), pp. 1063-1071Léon, J., Marcias, M., Escames, G., Camacho, E., Khaldy, H., Martin, M., Espinosa, A., Acuña-Castroviejo, D., Structure-related inhibition of calmodulin-dependent neuronal nitric oxide synthase activity by melatonin and synthase activity by melatonin and synthetic kynurenines (2000) Mol Pharmacol, 58 (5), pp. 967-975Koh, P.O., Melatonin regulates nitric oxide synthase expression in ischemic brain injury (2008) J Vet Med Sci, 70 (7), pp. 747-750. , 10.1292/jvms.70.747, 18685253Arese, M., Magnifico, M.C., Mastronicola, D., Altieri, F., Grillo, C., Blanck, T.J., Sarti, P., Nanomolar melatonin enhances nNOS expression and controls HaCaT-cells bioenergetics (2012) IUBMB Life, 64 (3), pp. 251-258. , 10.1002/iub.603, 22271455Léon, J., Escames, G., Rodríguez, M.I., López, L.C., Tapias, V., Entrena, A., Camacho, E., Acuña-Castroviejo, D., Inhibition of neuronal nitric oxide synthase activity by N1-acetyl-5-methoxykynuramine, a brain metabolite of melatonin (2006) J Neurochem, 98 (6), pp. 2023-2033. , 10.1111/j.1471-4159.2006.04029.x, 16945113Camacho, M.E., Carrion, M.D., Lopez-Cara, L.C., Entrena, A., Gallo, M.S., Espinosa, A., Escames, G., Acuña-Castroviejo, D., Melatonin synthetic analogs as nitric oxide synthase inhibitors (2012) Mini Rev Med Chem, 12 (7), pp. 600-617. , 10.2174/138955712800626674, 22512552Souza, C.M.Z., Silva, A.A.M.R., Caldas, M.C.S., Valentinuzzi, V.S., Ferrari, E.A.M., Diurnal Variation of plasmatic melatonin, corticosterone and variation of general activity in pigeons under light-dark cycle and constant light (2001) Biological Rhythms research, 32 (2), pp. 243-254Golombek, D.A., Escolar, E., Burin, L.J., Sánchez, M.G.B., Cardinali, D.P., Time-dependent melatonin analgesia in mice: inhibition by opiate or benzodiazepine antagonism (1991) Eur J Pharmacol, 194, pp. 25-30. , 10.1016/0014-2999(91)90119-B, 2060591Binkley, S.A., Circadian rhythms of pineal function in rats (1983) Endocr Rev, 4 (3), pp. 255-270. , 10.1210/edrv-4-3-255, 6313339Komsuoglu-Celikyurt, I., Gocmez, S.S., Mutlu, O., Aricioglu, F., Utkan, T., Evidence for the involvement of neuronal nitric oxide synthase and soluble guanylate cyclase on cognitive functions in rats (2011) Life Sci, 89 (23-24), pp. 905-910Utkan, T., Gocmez, S.S., Ozer, C., Gacar, N., Aricioglu, F., Selective and nonselective neuronal NOS inhibitors impair cognitive function in the three panel runway and passive avoidance tasks in rats (2012) Pharmacol Biochem Behav, 101 (4), pp. 515-519. , 10.1016/j.pbb.2012.02.020, 22405776Rapanelli, M., Frick, L.R., Zanutto, B.S., Modulation of endothelial and neuronal nitric oxide synthases during learning of an operant task (2010) J Neurochem, 113, pp. 725-734. , 10.1111/j.1471-4159.2010.06640.x, 20149028Oliveira, R.M., Guimarães, F.S., Deakin, J.F., Expression of neuronal nitric oxide synthase in the hippocampal formation in affective disorders (2008) Braz J Med Biol Res, 41 (4), pp. 333-341. , 10.1590/S0100-879X2008000400012, 18392456Tonetto, L.L., Terzian, A.L., Del Bel, E.A., Guimarães, F.S., Resstel, L.B., Inhibition of the NMDA receptor/Nitric Oxide pathway in the dorsolateral periaqueductal gray causes anxiolytic-like effects in rats submitted to the Vogel conflict test (2009) Behav Brain Funct, 5, pp. 40-47. , 10.1186/1744-9081-5-40, 2762983, 19775445Eckel, B., Ohl, F., Bogdanski, R., Kochs, E.F., Blobner, M., Cognitive deficits after systemic induction of inducible nitric oxide synthase: a randomised trial in rats (2011) Eur J Anaesthesiol, 28 (9), pp. 655-663. , 10.1097/EJA.0b013e3283497ce1, 21743335Cavallaro, S., D'Agata, V., Manickam, P., Dufour, F., Alkon, D.L., Memory-specific temporal profiles of gene expression in the hippocampus (2002) PNAS, 99, pp. 16279-16284. , 10.1073/pnas.242597199, 138602, 12461180Gökçek-Saraç, T., Karakurt, S., Adali, O., Jakubowska-Dogru, E., Correlation between hippocampal levels of neuronal, epithelial and inducible NOS and spatial learning skills in rats (2012) Behav Brain Res, 235, pp. 326-333. , 10.1016/j.bbr.2012.08.005, 22909987Eckel-Mahan, K.L., Storm, D.R., Circadian rhythms and memory: not to simple as cogs and gears (2009) EMBO rep, 10 (6), pp. 584-591. , 10.1038/embor.2009.123, 2711832, 19465890Ruby, N.F., Hwang, C.E., Wessells, C., Fernandez, F., Zhang, P., Sapolsky, R., Heller, G., Hippocampal-dependent learning requires a functional circadian system (2008) PNAS, 105 (40), pp. 15593-15598. , 10.1073/pnas.0808259105, 2563080, 18832172Atoji, Y., Wild, J.M., Yamamoto, Y., Suzuki, Y., Intratelencephalic connections of the hippocampus in pigeons (Columba livia) (2002) J Comp Neurol, 447, pp. 177-199. , 10.1002/cne.10239, 11977120Brito, I., Britto, L.R., Ferrari, E.A.M., Classical tone-shock conditioning induces Zenk expression in the pigeon (Columba livia) hippocampus (2006) Behav Neurosci, 120 (2), pp. 353-361Kahn, M.C., Hough Ii, G.E., Bingman, V.P., Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: an anterograde and retrograde tracer study (2002) J Comp Neurol, 459, pp. 127-14
    corecore