142 research outputs found

    the basis of muscle regeneration

    Get PDF
    Muscle regeneration recapitulates many aspects of embryonic myogenesis and is an important homeostatic process of the adult skeletal muscle, which, after development, retains the capacity to regenerate in response to appropriate stimuli, activating the muscle compartment of stem cells, namely, satellite cells, as well as other precursor cells. Moreover, significant evidence suggests that while stem cells represent an important determinant for tissue regeneration, a "qualified" environment is necessary to guarantee and achieve functional results. It is therefore plausible that the loss of control over these cell fate decisions could lead to a pathological transdifferentiation, leading to pathologic defects in the regenerative process. This review provides an overview about the general aspects of muscle development and discusses the cellular and molecular aspects that characterize the five interrelated and time-dependent phases of muscle regeneration, namely, degeneration, inflammation, regeneration, remodeling, and maturation/functional repair

    Oxidative stress and muscle homeostasis

    Get PDF
    Purpose of review The term oxidative stress is often used to indicate a condition in which the accumulation of reactive oxygen species is considered just damaging. We will discuss both the physiological and pathological role of oxidative stress on skeletal muscle homeostasis and function, and how oxidative stress can activates opposite signaling molecule to regulate gene and protein expression to guarantee muscle adaptation and to trigger a pathological condition. Recent findings Emerging evidences have assigned a critical role to oxidative stress in muscle homeostasis and in the physiopathology of skeletal muscle, suggesting that reactive oxygen species are not merely damaging agent inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, proliferation, differentiation, and adaptation, at least within physiological concentration. Summary The role of oxidative stress on muscle homeostasis is quite complex. It is clear that transiently increased levels of oxidative stress might reflect a potentially health promoting process, whereas an uncontrolled accumulation of oxidative stress might have pathological implication. Additional work is, therefore, necessary to understand and define precisely whether the manipulation of the redox balance represents a useful approach in the design of therapeutic strategies for muscle diseases.PURPOSE OF REVIEW: The term oxidative stress is often used to indicate a condition in which the accumulation of reactive oxygen species is considered just damaging. We will discuss both the physiological and pathological role of oxidative stress on skeletal muscle homeostasis and function, and how oxidative stress can activates opposite signaling molecule to regulate gene and protein expression to guarantee muscle adaptation and to trigger a pathological condition. RECENT FINDINGS: Emerging evidences have assigned a critical role to oxidative stress in muscle homeostasis and in the physiopathology of skeletal muscle, suggesting that reactive oxygen species are not merely damaging agent inflicting random destruction to the cell structure and function, but useful signaling molecules to regulate growth, proliferation, differentiation, and adaptation, at least within physiological concentration. SUMMARY: The role of oxidative stress on muscle homeostasis is quite complex. It is clear that transiently increased levels of oxidative stress might reflect a potentially health promoting process, whereas an uncontrolled accumulation of oxidative stress might have pathological implication. Additional work is, therefore, necessary to understand and define precisely whether the manipulation of the redox balance represents a useful approach in the design of therapeutic strategies for muscle diseases

    The hormetic and hermetic role of IL-6

    Get PDF
    : Interleukin-6 is a pleiotropic cytokine regulating different tissues and organs in diverse and sometimes discrepant ways. The dual and sometime hermetic nature of IL-6 action has been highlighted in several contexts and can be explained by the concept of hormesis, in which beneficial or toxic effects can be induced by the same molecule depending on the intensity, persistence, and nature of the stimulation. According with hormesis, a low and/or controlled IL-6 release is associated with anti-inflammatory, antioxidant, and pro-myogenic actions, whereas increased systemic levels of IL-6 can induce pro-inflammatory, pro-oxidant and pro-fibrotic responses. However, many aspects regarding the multifaceted action of IL-6 and the complex nature of its signal transduction remains to be fully elucidated. In this review we collect mechanistic insight into the molecular networks contributing to normal or pathologic changes during advancing age and in chronic diseases. We point out the involvement of IL-6 deregulation in aging-related diseases, dissecting the hormetic action of this key mediator in different tissues, with a special focus on skeletal muscle. Since IL-6 can act as an enhancer of detrimental factor associated with both aging and pathologic conditions, such as chronic inflammation and oxidative stress, this cytokine could represent a "Gerokine", a determinant of the switch from physiologic aging to age-related diseases

    growth factor enhancement of cardiac regeneration

    Get PDF
    The potential for endogenous or supplementary stem cells to restore the form and function of damaged tissues is particularly promising for overcoming the restricted regenerative capacity of the mammalian heart. To maintain blood circulation, this essential organ needs to launch a rapid response to repair damage of the muscle wall and to prevent muscle loss. The capacity of growth factors to supplement the repair process has been successfully applied to restore the integrity of damaged skeletal muscle, reducing the fibrotic response to injury, and recruiting local populations of self-renewing precursor cells and circulating stem cells. We review the recent evidence that extension of growth factor supplementation to the heart may overcome its inherent regenerative impediments through improvement of the local tissue environment and stimulation of cell replacement, and we speculate on future research directions for treatment of myocardial damage

    Muscle atrophy induced by SOD1G93A expression does not involve the activation of caspase in the absence of denervation

    Get PDF
    BACKGROUND: The most remarkable feature of skeletal muscle is the capacity to adapt its morphological, biochemical and molecular properties in response to several factors. Nonetheless, under pathological conditions, skeletal muscle loses its adaptability, leading to atrophy or wasting. Several signals might function as physiopathological triggers of muscle atrophy. However, the specific mechanisms underlying the atrophic phenotype under different pathological conditions remain to be fully elucidated. In this paper, we address the involvement of caspases in the induction of muscle atrophy in experimental models of amyotrophic lateral sclerosis (ALS) expressing the mutant SOD1G93A transgene either locally or ubiquitously. RESULTS: We demonstrate that SOD1G93A-mediated muscle atrophy is independent from caspase activity. In particular, the expression of SOD1G93A promotes a reduction of the phosphatidylinositol 3-kinase/Akt pathway associated with activation of forkhead box O3. In contrast, the activation of caspases occurs later and is causally linked to motor neuron degeneration, which is associated with exacerbation of the atrophic phenotype and a shift in fiber-type composition. CONCLUSION: This study suggests that muscle atrophy induced by the toxic effect of SOD1G93A is independent from the activation of apoptotic markers and that caspase-mediated apoptosis is a process activated upon muscle denervation

    Counteracting muscle wasting in aging and neuromuscular diseases: the critical role of IGF-1

    Get PDF
    Most muscle pathologies are characterized by the progressive loss of muscle tissue due to chronic degeneration combined with the inability of regeneration machinery to replace the damaged muscle. These pathological changes, known as muscle wasting, can be attributed to the activation of several proteolytic systems, such as calpain, ubiquitin-proteasome and caspases, and to the alteration in muscle growth factors. Among them, insulin-like growth factor-1 (IGF-1) has been implicated in the control of skeletal muscle growth, differentiation, survival, and regeneration and has been considered a promising therapeutic agent in staving off the advance of muscle weakness. Here we review the molecular basis of muscle wasting associated with diseases, such as sarcopenia, muscular dystrophy and Amyotrophic Lateral Sclerosis, and discuss the potential therapeutic role of local IGF-1 isoforms in muscle aging and diseases

    Neuromuscular junction as an entity of nerve-muscle communication

    Get PDF
    One of the crucial systems severely affected in several neuromuscular diseases is the loss of effective connection between muscle and nerve, leading to a pathological non-communication between the two tissues. The neuromuscular junction (NMJ) represents the critical region at the level of which muscle and nerve communicate. Defects in signal transmission between terminal nerve endings and muscle membrane is a common feature of several physio-pathologic conditions including aging and Amyotrophic Lateral Sclerosis (ALS). Nevertheless, controversy exists on whether pathological events beginning at the NMJ precede or follow loss of motor units. In this review, the role of NMJ in the physio-pathologic interplay between muscle and nerve is discussed

    Report on Abstracts of the 15th Meeting of IIM, the Interuniversity Institute of Myology - Assisi (Italy), October 11-14, 2018

    Get PDF
    On October 11-14, 2018, the 15th Meeting of the Interuniversity Institute of Myology (IIM) took place in the city Assisi, Italy. Muscle researchers from Italy, and various European and North-American countries gathered to discuss recent results on the physiology and diseases of skeletal muscle. The program showcased keynote lectures from world-renowned international speakers presenting advances in muscle stem cells, circadian rhythm, organismal development and growth, muscle physiology, and bioengineering. Novel, unpublished results from young trainees were presented as oral communications or posters, based on selection from submitted abstracts. Young trainees where directly involved in several aspects of the meeting by being responsible of organizing a scientific session, arranging three round tables tailored to the interests of their peers and chairing all scientific sessions. The meeting offered a unique opportunity for young researchers to present their work, have feedback from more experienced colleagues and establish collaborations to further understanding of muscular diseases and develop therapeutic strategies. The open, informal and friendly atmosphere of the meeting stimulated lively discussions, instrumental to highlight key areas of muscle research and foster scientific cross-fertilization and new collaborations. The meeting was very successful. A sign that the IIM community will continue to deliver important contributions to the training of young students and fellows, promoting our understanding of muscle formation and activity, the mechanism of muscle diseases and the progress toward therapeutic approaches. The Myology field is strong and articulated in basic, translational and early clinical research, moving toward the development of treatments for several muscle diseases as documented by the abstracts of the IIM meeting

    Progressive impairment of CaV1.1 function in the skeletal muscle of mice expressing a mutant type 1 Cu/Zn superoxide dismutase (G93A) linked to amyotrophic lateral sclerosis

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disorder that is typically fatal within 3–5 years of diagnosis. While motoneuron death is the defining characteristic of ALS, the events that underlie its pathology are not restricted to the nervous system. In this regard, ALS muscle atrophies and weakens significantly before presentation of neurological symptoms. Since the skeletal muscle L-type Ca2+ channel (CaV1.1) is a key regulator of both mass and force, we investigated whether CaV1.1 function is impaired in the muscle of two distinct mouse models carrying an ALS-linked mutation. Methods: We recorded L-type currents, charge movements, and myoplasmic Ca2+ transients from dissociated flexor digitorum brevis (FDB) fibers to assess CaV1.1 function in two mouse models expressing a type 1 Cu/Zn superoxide dismutase mutant (SOD1G93A). Results: In FDB fibers obtained from “symptomatic” global SOD1G93A mice, we observed a substantial reduction of SR Ca2+ release in response to depolarization relative to fibers harvested from age-matched control mice. L-type current and charge movement were both reduced by ~40 % in symptomatic SOD1G93A fibers when compared to control fibers. Ca2+ transients were not significantly reduced in similar experiments performed with FDB fibers obtained from “early-symptomatic” SOD1G93A mice, but L-type current and charge movement were decreased (~30 and ~20 %, respectively). Reductions in SR Ca2+ release (~35 %), L-type current (~20 %), and charge movement (~15 %) were also observed in fibers obtained from another model where SOD1G93A expression was restricted to skeletal muscle. Conclusions: We report reductions in EC coupling, L-type current density, and charge movement in FDB fibers obtained from symptomatic global SOD1G93A mice. Experiments performed with FDB fibers obtained from early-symptomatic SOD1G93A and skeletal muscle autonomous MLC/SOD1G93A mice support the idea that events occurring locally in the skeletal muscle contribute to the impairment of CaV1.1 function in ALS muscle independently of innervation status

    Measuring the maximum power of an ex vivo engineered muscle tissue with isovelocity shortening technique

    Get PDF
    The final aim of muscle tissue engineering (TE) is to create a new tissue able to restore the functionality of impaired muscles once transplanted in the site of injury. Therefore, functional contractile properties close to that of healthy muscles are desirable to allow for a good compatibility and a proper functional contribution. Since skeletal muscles deal with locomotion during their normal activity, an accurate measurement of ex vivo muscle engineered tissues' isotonic properties is crucial. In this paper, we devised an experimental system to measure the mechanical power generated by an ex vivo muscle engineered tissue, the X-MET, based on the isovelocity contraction technique. The X-MET is developed without the use of any scaffolds, so that its mechanical properties are not affected by endogenous components. Our experiments allowed for delimiting the ranges of shortening and shortening velocity for which the tissue is able to generate and maintain power for the entire stimulation, which is the condition that better reproduces muscle physiological activity. Then, we measured the power generated by the X-MET and fit the experimental results to the Hill's equation usually employed for modeling the force-velocity relationship of skeletal muscles. The use of this model yielded to the measurement of maximum power and maximum shortening velocity. Results revealed that most of the isotonic properties were consistent with that proposed in the literature for slow-twitch muscles; in particular, the X-METs were able to generate a maximum power of 2.08± 0.78 W/kg and had a maximum shortening velocity of 1.84 ± 0.57 L₀/s, on average
    corecore