93 research outputs found
Collapse and Bose-Einstein condensation in a trapped Bose-gas with negative scattering length
We find that the key features of the evolution and collapse of a trapped Bose
condensate with negative scattering length are predetermined by the particle
flux from the above-condensate cloud to the condensate and by 3-body
recombination of Bose-condensed atoms. The collapse, starting once the number
of Bose-condensed atoms reaches the critical value, ceases and turns to
expansion when the density of the collapsing cloud becomes so high that the
recombination losses dominate over attractive interparticle interaction. As a
result, we obtain a sequence of collapses, each of them followed by dynamic
oscillations of the condensate. In every collapse the 3-body recombination
burns only a part of the condensate, and the number of Bose-condensed atoms
always remains finite. However, it can comparatively slowly decrease after the
collapse, due to the transfer of the condensate particles to the
above-condensate cloud in the course of damping of the condensate oscillations.Comment: 11 pages, 3 figure
Dynamics of dark solitons in elongated Bose-Einstein condensates
We find two types of moving dark soliton textures in elongated Bose-Einstein
condensates: non-stationary kinks and proper dark solitons. The former have a
curved notch region and rapidly decay by emitting phonons and/or proper dark
solitons. The proper moving solitons are characterized by a flat notch region
and we obtain the diagram of their dynamical stability. At finite temperatures
the dynamically stable solitons decay due to the thermodynamic instability. We
develop a theory of their dissipative dynamics and explain experimental data.Comment: ~ 5 pages, 1 figur
Solitons, solitonic vortices, and vortex rings in a confined Bose-Einstein condensate
Quasi-one-dimensional solitons that may occur in an elongated Bose-Einstein
condensate become unstable at high particle density. We study two basic modes
of instability and the corresponding bifurcations to genuinely
three-dimensional solitary waves such as axisymmetric vortex rings and
non-axisymmetric solitonic vortices. We calculate the profiles of the above
structures and examine their dependence on the velocity of propagation along a
cylindrical trap. At sufficiently high velocity, both the vortex ring and the
solitonic vortex transform into an axisymmetric soliton. We also calculate the
energy-momentum dispersions and show that a Lieb-type mode appears in the
excitation spectrum for all particle densities.Comment: RevTeX 9 pages, 9 figure
Quantum fluctuations in coupled dark solitons in trapped Bose-Einstein condensates
We show that the quantum fluctuations associated with the Bogoliubov
quasiparticle vacuum can be strongly concentrated inside dark solitons in a
trapped Bose Einstein condensate. We identify a finite number of anomalous
modes that are responsible for such quantum phenomena. The fluctuations in
these anomalous modes correspond to the `zero-point' oscillations in coupled
dark solitons.Comment: 4 pages, 3 figure
Lieb Mode in a Quasi One-Dimensional Bose-Einstein Condensate of Atoms
We calculate the dispersion relation associated with a solitary wave in a
quasi-one-dimensional Bose-Einstein condensate of atoms confined in a harmonic,
cylindrical trap in the limit of weak and strong interactions. In both cases,
the dispersion relation is linear for long wavelength excitations and
terminates at the point where the group velocity vanishes. We also calculate
the dispersion relation of sound waves in both limits of weak and strong
coupling.Comment: 4 pages, 2 ps figures, RevTe
The spectral properties of non-condensate particles in Bose-condensed atomic hydrogen
The strong spin-dipole relaxation, accompanying BEC in a gas of atomic
hydrogen, determines the formation of a quasistationary state with a flux of
particles in energy space to the condensate. This state is characterized by a
significant enhancement of the low-energy distribution of non-condensate
particles resulting in a growth of their spatial density in the trap. This
growth leads to the anomalous reconstruction of the optical spectral properties
of non-condensate particles.Comment: revised, 4 pages, RevTeX, 2 figure
Simulation of a stationary dark soliton in a trapped zero-temperature Bose-Einstein condensate
We discuss a computational mechanism for the generation of a stationary dark
soliton, or black soliton, in a trapped Bose-Einstein condensate using the
Gross-Pitaevskii (GP) equation for both attractive and repulsive interaction.
It is demonstrated that the black soliton with a "notch" in the probability
density with a zero at the minimum is a stationary eigenstate of the GP
equation and can be efficiently generated numerically as a nonlinear
continuation of the first vibrational excitation of the GP equation in both
attractive and repulsive cases in one and three dimensions for pure harmonic as
well as harmonic plus optical-lattice traps. We also demonstrate the stability
of this scheme under different perturbing forces.Comment: 7 pages, 15 ps figures, Final version accepted in J Low Temp Phy
- …