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Dynamics of Dark Solitons in Elongated Bose-Einstein Condensates
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We find two types of moving dark soliton textures in elongated condensates: nonstationary kinks and
proper dark solitons. The latter have a flat notch region and we obtain the diagram of their dynamical
stability. At finite temperatures the dynamically stable solitons decay due to the thermodynamic
instability. We develop a theory of their dissipative dynamics and explain experimental data.
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and ultimately disappears. This mechanism has been
proposed in Ref. [12], and the lifetime of the soliton

(the scattering length a > 0). The condensate wave func-
tion can be written as ��r; t� exp��i�t�, where � is the
Recently, several spectacular experiments have dem-
onstrated the creation of vortices [1–3] and dark solitons
[4–7] in Bose-Einstein condensates (BEC) of trapped
alkali-atom gases. These experiments open an unprece-
dented possibility to study the dissipative dynamics of
such macroscopically excited Bose-condensed states. The
vortex has a topological charge (circulation), and the
dynamically stable (single-charged) vortices can decay
only when reaching the border of the condensate. At finite
temperatures in nonrotating traps, the motion of the
vortex to the border is induced by thermal excitations
and is rather slow. The lifetime of vortices in trapped
condensates [8,9] is thus relatively long and extends to a
few seconds in the experiments [1–3].

Dark solitons have a density dip and a phase slip in one
direction and, as well as vortices, they are particular
solutions of the Gross-Pitaevskii (GP) equation. Ex-
tensive studies of dark solitons in nonlinear optics [10]
have expounded their transverse dynamical instability in
3D, leading to the undulation of the soliton plane and
decay into vortex-antivortex pairs and phonon waves.
This scenario is similar to that observed at NIST [4]
and at Harvard [7]. The decay of solitons into vortex
rings was observed at JILA [6]. The transverse instability
of dark solitons can be suppressed by a strong radial
confinement of their motion in elongated traps [11].
Dynamically stable solitons in such traps are not, how-
ever, thermodynamically stable, and their dissipative dy-
namics is expected to be fundamentally different from
that of vortices.

In contrast to vortices, the soliton has no topological
charge and can decay without reaching the border of the
condensate. Dark solitons behave as objects with a nega-
tive mass. The scattering of thermal excitations from the
soliton decreases its energy, and the soliton accelerates
towards the speed of sound, gradually loses its contrast,
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has been obtained in terms of the reflection coefficient
of the excitations. However, the reflection coefficient is
calculated wrongly in Ref. [12]. In the 1D case the GP
equation is integrable and the reflection vanishes in the
Bogolyubov approach. Thus, one expects very long life-
times of solitons in this limit. On the other hand, in 3D
elongated traps the GP equation is no longer integrable
and the scattering of thermal excitations from the soliton
should be efficient. The absence of topological charge can
then lead to a much faster dissipative dynamics of soli-
tons than that of vortices. The Hannover results [5] indeed
suggest that moving solitons in a cigar-shaped trap are
dynamically stable, but their contrast rapidly decreases to
zero due to the thermodynamic instability.

In this Letter we study the dynamics of moving dark
solitons in 3D elongated Bose-Einstein condensates and
present three important results: (i) We find that using the
‘‘phase imprinting method’’ [5,13] one can generate at
least two kinds of soliton textures: nonstationary kinks
and proper dark solitons. The former have a notch region
that moves with radially nonuniform velocity and under-
goes bending similar to that observed at NIST [4]. These
textures are dynamically unstable and decay via the
emission of phonons and/or proper dark solitons. The
proper solitons are characterized by a flat notch region
and can be dynamically stable. Then they propagate with-
out changing their shape; (ii) We derive the diagram of
dynamical stability for proper solitons; (iii) We solve the
problem of reflection of excitations from the soliton and
analyze its decay due to thermodynamic instability. The
dissipative dynamics exhibits an interplay between the
extent of nonintegrability and the absence of topological
charge, and the soliton lifetime ranges from milliseconds
for Hannover-type 3D solitons to more than seconds in
quasi-1D geometries.

We consider a condensate with repulsive interaction
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chemical potential. In an infinitely long cylindrical har-
monic trap this function satisfies the GP equation
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Here !� is the frequency of the radial (�) confinement,
g � 4��h2a=m, andm is the atom mass. The wave function
of the ground-state condensate minimizes the corre-
sponding energy functional and is the solution of Eq. (1)
with zero left-hand side. Macroscopically excited BEC
states (solitons, vortices) do not correspond to the mini-
mum of the energy functional and are thermodynami-
cally unstable.

A stationary, or solitary-wave macroscopically excited
BEC state can also be dynamically unstable with regard
to elementary excitations around it. The unstable excita-
tion modes are characterized by complex eigenfrequen-
cies and grow exponentially in time, which indicates that
the BEC state will evolve far from the initial shape.

Strictly speaking, dark solitons are solutions of the 1D
GP equation in free space. They are characterized by a
local density minimum (notch) moving with a constant
velocity v, and by a phase gradient of the wave function at
the position of the minimum. In an otherwise uniform
condensate of density n0, the dark soliton state is de-
scribed by the wave function (see [12] and references
therein)

��z; t� �
�����
n0

p
�cos�� i sin� tanh�sin��z� vt�=l0	�; (2)

where cos� � v=cs, and cs �
���������������
n0g=m

p
is the speed of

sound. The quantities � and �� are the phases of the soli-
ton state at �z� vt� ! �1 and �z� vt� ! 1, respec-
tively. The width L of the notch (soliton plane) is of the
order of the correlation length l0 � �h=mcs. Approximate
soliton solutions can be also found in 1D harmonic traps
[14,15]. Solitons which have nonzero velocity in the
center of the trap oscillate along the trap axis [15].

In 3D harmonic traps the solutions of the GP equation,
describing standing dark solitons (v � 0 and @�=@t �
0), have been found in [11,16]. For infinitely long cylin-
drical condensates these solutions follow from Eq. (1) and
can decay due to the transverse dynamical instability. The
stability criterion requires a strong radial confinement
providing a non-Thomas-Fermi (TF) regime with the
radial size of the condensate r & L� l0.

The existence of moving solitonlike textures in 3D
elongated condensates is confirmed by the experiments
and simulations [5], but no analytical solution has been
found so far. In the TF regime (�
 �h!�), one can use
Eq. (2) with �-dependent n0 and l0. Then, the absence of
the radial flux of particles at an infinite axial separation
from the notch requires the phase � to be independent of
the radial coordinate. This means that the notch velocity
v depends on � and is proportional to the local velocity of
sound cs���. Hence, the central regions of the notch move
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faster than the borders, and an initially flat notch region
bends in the course of motion. Our simulations for TF
condensates show that imprinting of a �-phase slip along
z axis with �-independent optical potential creates such
nonstationary kinks. They are dynamically unstable and
decay on a time scale of the order of !�1

� . The notch
surface bends, whereas the notch velocity increases and
the depth decreases. For �=�h!� > 10 the nonstationary
kink decays ultimately into phonon waves. For �=�h!� &

5 it transforms into a proper dark soliton characterized by
a flat notch region and �-independent velocity. In non-TF
condensates (���h!�) we generated the proper solitons
directly by simulating the �-phase slip imprinting.

We first develop an analytical approach for describing
moving proper solitons in the limiting case where the
axial size L of the soliton notch greatly exceeds the radial
size r of the condensate, and the solitons are expected to
be dynamically stable. In an infinitely long cylindrical
condensate, the velocity v and the shape of a dynamically
stable soliton remain unchanged in the absence of dis-
sipation. The wave function � depends on � and x � z�
vt and we write it in the form ���; x� �  ��; x�f�x�,
where the functions  ��; x� and f�x� satisfy the equations

i�h@ =@t � f���h2=2m���� 2�rxf=f�rx	 �m!2
��2=2

� gjfj2j j2 � ~���jfj�g ; (3)

i�h@f=@t � ���h2=2m��xf� � ~���f� ��	f: (4)

The quantity ~�� is a functional of f and has to be found
self-consistently from Eqs. (3) and (4). We will select the
function  ��; x� such that at infinite x it becomes the wave
function of the ground-state condensate,  0���. Hence,
for jxj ! 1 we have jfj ! 1 and ~�� ! �.

Under the condition r� L the radial distribution of
particles is close to that for the ground-state condensate.
The quantity ~���f� is close to � and can be expressed as
~���f� � �� �jfj2 � 1�g@�=@g� � ~��, where � ~�� is a cor-
rection of higher order in r=L. The quantity g@�=@g �
m �cc2s , where �ccs is nothing else than the velocity of axially
propagating sound waves in the ground-state condensate.
In the quasi-1D regime, where the interparticle interac-
tion at maximum condensate density n0mg� �h!�, we
have an almost Gaussian density profile. The radial size
r� l� � ��h=m!��

1=2, and the small parameter of the
expansion for ~�� is �r=L�2 � n0mg=�h!�. To first order in
n0mg=�h!� we obtain g@�=@g � n0mg=2. This gives the
velocity �ccs by a factor of

���
2

p
smaller than the speed of

sound at maximum density: �ccs �
��������������������
n0mg=2m

p
. For radi-

ally TF condensates the chemical potential � /
���
g

p
and

we arrive at the same expression for �ccs. This result for TF
elongated condensates has been obtained in [17] and
found in the MIT experiment [18]. The condition r� L
requires fast TF solitons for which the density dip is small
and the function jf�x�j is close to 1.

Omitting the higher order correction � ~��, Eq. (4) for
the function f�x� becomes an ordinary 1D GP equation
110401-2
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i�h@f=@t � ���h2=2m��xf�m�cc2s��jfj
2 � 1�f: (5)

The dark soliton solution f�x� is given by the right-hand
side (rhs) of Eq. (2), where cs is replaced by �ccs, l0 by �ll0 �
l0=

���
2

p
, and n0 by unity. The solitonlike wave function of

the condensate can be written as ���; x� �  0���f�x�.
For v! �ccs the condition r� L is always satisfied, and
one clearly sees that in any case the maximum soliton
velocity (at which the soliton disappears) is equal to �ccs.

The dynamical stability of proper solitons is deter-
mined by the parameter r=L, and the instability border
is reached for r� L. In this case the developed analytical
approach can be no longer used and we have found the
proper soliton solutions numerically from Eq. (1). To
investigate the dynamical stability of moving solitons
we have numerically solved a time-dependent equation
for elementary excitations around the obtained soliton
wave function [19]. For a given soliton velocity v, the
parameter r=L increases with the ratio n0mg=�h!�. Above
a critical value n0mg=�h!� � �c (r=L close to 1) the trans-
verse instability was manifesting itself in our calcula-
tions as a dramatic rise of excitation modes. In Fig. 1 we
present the critical ratio �c as a function of the soliton
velocity. For n0mg=�h!� < �c the solitons are dynami-
cally stable. Note that �c � 2:5 for a standing soliton,
which agrees with the earlier calculation [11]. For the
solitons with high velocities the relation r� L is reached
at larger n0mg=�h!�, and thus the stability condition is
more relaxed [20].

We now discuss the thermodynamic instability of dy-
namically stable solitons in the presence of a thermal
cloud and start with the quasi-1D regime (n0mg�
�h!�). In this regime we have r� L and the dark solitons
are described by Eq. (5) which is completely integrable.
Hence, the solitons are transparent for excitations. This
follows directly from the solutions for time-dependent
excitations of the solitonlike condensate [22]. Thus there
is no energy and momentum exchange between the soli-
ton and the thermal cloud, and the thermodynamic in-
stability does not manifest itself.
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FIG. 1. The critical ratio n0mg=�h!� � �c versus the soliton
velocity v (in units of �ccs). Solitons are stable below this curve.
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The dissipative dynamics of the solitons originates
from the interaction between the radial and axial degrees
of freedom, which results in the second order correction
� ~�� to the quantity ~�� in Eq. (4). In the quasi-1D regime,
to first order in n0mg=�h!� the function  ��; x� �  0��� �
� ��; x�, where a small term � is real. The correction
� ~�� is then equal to ���n0mg=2��jfj

2 � 1�	2, where � �
3n0mg ln�4=3�=�h!� � 1. Thus, we obtain ~���f��
��m �cc2s��jfj

2�1����jfj2�1�2	, and Eq. (4) becomes
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dx2
�m�cc2s��jfj

2 � 1� � ��jfj2 � 1�2	f:

(6)

The interaction between the axial and radial degrees of
freedom is described by the small term ��jfj2 � 1�2 in the
rhs of Eq. (6). This term only slightly modifies ���; x�,
but it lifts the integrability of the equation and leads to
the reflection of excitations from the soliton.

For finding the probability of reflection of an incident
excitation with momentum k and energy " [reflection
coefficient R�k�], we have solved the Bogolyubov–
de Gennes equations following from Eq. (6). For the
phonon branch of the spectrum, where the axial momen-
tum of an excitation k� �ll�1

0 , the excitation wave func-
tions u; v were found in the form of expansion in powers
of k�ll0 and � around the fundamental modes of the
Bogolyubov–de Gennes equations with � � 0. The u; v
functions of these equations were obtained straightfor-
wardly for an arbitrary k and used for calculating the
reflection coefficient R�k� from the Fermi golden rule. For
k�ll0 � 1 the obtained R�k� matches the one following
from the method of fundamental modes. Thus at any "
and k we obtain

R�k��
�

8���"�"kv��ll20
9"sinhf���jkj�jk0j��ll0=2

���������������������
1�v2= �cc2s

p
g

�
2 jkk0j
%�k�%�k0�

;

(7)

where %�k��@�"�"kv�@"k is the group velocity. The
energy "0 and momentum k0 of the reflected wave are
related to " and k by the energy conservation law in the
reference frame moving together with the soliton, "�
"kv�"0 �"k0v. For small k the reflection coefficient
increases as k2/"2. The coefficient reaches its maxi-
mum at k� �ll�1

0

���������������������
1�v2= �cc2s

p
and decays exponentially for

large k.
The reflection of excitations from the soliton provides a

momentum transfer from the thermal cloud to the soliton.
Hence, there is a friction force acting on the soliton. The
momentum transfer per unit time is given by

_pp �
Z 1

�1
�h�k� k0�R�k�%�k�N�"� �hkv�dk=2�; (8)

where N�"� �hkv� are excitations occupation numbers.
The energy of the soliton can be written in the form

H��M �cc2s=3��1�v2= �cc2s�3=2, with M�2�n0m�ll0r2m being
the effective mass of the soliton (r�

���
2

p
l� in the quasi-1D
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regime). The soliton energy decreases with increasing v.
For example, for v� �ccs we have H � M �cc2s=3�Mv2=2.
The quantity N� � M=m
 1 is the number of particles
that one has to remove from the condensate in order to
create the soliton density dip. Thus, the dark soliton can
be treated as a heavy classical particlelike object with a
negative mass, and the friction force accelerates the soli-
ton towards the velocity of sound (see [12]).

The Hamiltonian equation @H=@p � v gives _pp �
�M _vv�1� v2= �cc2s�

1=2. Then, from Eqs. (7) and (8) we
obtain the time dependence of the soliton velocity and
that of the soliton contrast C � �1� v2= �cc2s�. This imme-
diately gives the time t at which the contrast decreases
from the initial value C0 to C�t�. In particular, for T 

n0mg this time can be found from the relations

F�C� � F�C0� � t=-; - � �hN�=TR0: (9)

Here F�C� is a universal function of the contrast, and
R0 � 0:084�2 is the maximum value of the reflection
coefficient in the limit of v! 0. The function F�C� was
calculated numerically and can be approximated as
F�C� � 0:47 lnf�1� C�=Cg [23]. The quantity - can be
regarded as a characteristic lifetime of the soliton. For
example, if the contrast is initially equal to 30%, it
decreases to 10% at a time t � 0:25-.

The dissipative dynamics of quasi-1D solitons is gov-
erned by the small extent of nonintegrability of Eq. (6)
(�� 1) and the time - can be very long. The physical
picture changes to the opposite one if the axial size L of
the notch becomes comparable with the radial size r of the
condensate. Then the nonintegrability of the GP equation
is essential and the absence of topological charge provides
a fast dissipative dynamics.

The condition L� r was fulfilled for solitons in the
Hannover experiment [5]. For the number of atoms N �
1:5� 105, and the trap frequencies!z � 2�� 14 Hz and
!� � 2�� 425 Hz, we calculate the critical tempera-
ture Tc � 350 nK, the maximum density n0m �
4� 1014 cm�3, and the chemical potential � � 140 nK.
This indicates that the solitons were in the TF regime,
with �=�h!� � 7. The thermal fraction was about 10%,
which corresponds to T � 0:5Tc and �=T � 0:8. The
measured soliton contrast was decreasing from � 30%
to � 10% at a time of 15 ��5� ms. The results in Fig. 1
indicate that the dark solitons of Ref. [5] were dynami-
cally stable. Using a direct numerical approach, we cal-
culated the reflection coefficient of excitations from the
soliton. The dependence of R on k and v is similar to that
in the limit of r�L. The maximum reflection coefficient
for v!0 is R0�0:7. Then from Eq. (9) we find - �
80 ms and conclude that the soliton contrast decreases
from 30% to 10% at a time of 20 ( � 5) ms, in agreement
with [5].

In conclusion, we have investigated the dynamical
stability and dissipative dynamics of solitons in elongated
BEC’s, and explained the experimental data of Ref. [5].
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For recently achieved quasi-1D BEC’s, [24] the parame-
ter �� 0:1 and our theory predicts the soliton lifetime
larger than seconds. This opens prospects for studying
dissipative phenomena originating from the quantum
character of the boson field omitted in the common GP
approach. Temperature dependence of the soliton lifetime
offers interesting possibilities of BEC thermometry.
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