59 research outputs found

    IlsA, A Unique Surface Protein of Bacillus cereus Required for Iron Acquisition from Heme, Hemoglobin and Ferritin

    Get PDF
    The human opportunistic pathogen Bacillus cereus belongs to the B. cereus group that includes bacteria with a broad host spectrum. The ability of these bacteria to colonize diverse hosts is reliant on the presence of adaptation factors. Previously, an IVET strategy led to the identification of a novel B. cereus protein (IlsA, Iron-regulated leucine rich surface protein), which is specifically expressed in the insect host or under iron restrictive conditions in vitro. Here, we show that IlsA is localized on the surface of B. cereus and hence has the potential to interact with host proteins. We report that B. cereus uses hemoglobin, heme and ferritin, but not transferrin and lactoferrin. In addition, affinity tests revealed that IlsA interacts with both hemoglobin and ferritin. Furthermore, IlsA directly binds heme probably through the NEAT domain. Inactivation of ilsA drastically decreases the ability of B. cereus to grow in the presence of hemoglobin, heme and ferritin, indicating that IlsA is essential for iron acquisition from these iron sources. In addition, the ilsA mutant displays a reduction in growth and virulence in an insect model. Hence, our results indicate that IlsA is a key factor within a new iron acquisition system, playing an important role in the general virulence strategy adapted by B. cereus to colonize susceptible hosts

    Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes.

    Get PDF
    We have generated for the first time monoclonal antibodies (mAbs) specific for topoisomerase I (topo I) from scleroderma patients, and tight skin mice which develop a scleroderma-like syndrome. The epitope specificity of these antibodies has been determined using a series of fusion proteins containing contiguous portions of topo I polypeptide. Western blot analysis demonstrated that both human and mouse mAbs bound strongly to fusion protein C encompassing the NH2-terminal portion of the enzyme, and weakly to fusion proteins F and G containing regions close to the COOH-terminal end of the molecule. This crossreactivity is related to a tripeptide sequence homology in F, G, and C fusion proteins. It is interesting that a pentapeptide sequence homologous to that in fusion protein C was identified in the UL70 protein of cytomegalovirus, suggesting that activation of autoreactive B cell clones by molecular mimicry is possible. Both human and mouse mAbs exhibiting the same antigen specificity, also share an interspecies cross-reactive idiotope. These data suggest that B cell clones producing antitopo autoantibodies present in human and mouse repertoire are conserved during phylogeny, and are activated during the development of scleroderma disease

    Binding specificity of antiidiotypic autoantibodies to anti-DNA antibodies in humans.

    No full text
    corecore