26 research outputs found

    Do Fecal Indicator Bacteria Multiply in the Soil Environments of Hawaii?

    Get PDF
    United States Environmental Protection Agency: Grants Administration Division; RARE Program, Region IX: cooperative agreement no. C R 824382-01-

    Assessing the Applicability of USEPA Recreational Water Quality Standards to Hawaii and Other Tropical Islands

    Get PDF
    The Department of Health, State of Hawaii; agreement no. 94-51

    Examination of the Watershed-Wide Distribution of Escherichia coli along Southern Lake Michigan: an Integrated Approach

    No full text
    Recent research has highlighted the occurrence of Escherichia coli in natural habitats not directly influenced by sewage inputs. Most studies on E. coli in recreational water typically focus on discernible sources (e.g., effluent discharge and runoff) and fall short of integrating riparian, nearshore, onshore, and outfall sources. An integrated “beachshed” approach that links E. coli inputs and interactions would be helpful to understand the difference between background loading and sewage pollution; to develop more accurate predictive models; and to understand the differences between potential, net, and apparent culturable E. coli. The objective of this study was to examine the interrelatedness of E. coli occurrence from various coastal watershed components along southern Lake Michigan. The study shows that once established in forest soil, E. coli can persist throughout the year, potentially acting as a continuous non-point source of E. coli to nearby streams. Year-round background stream loading of E. coli can influence beach water quality. E. coli is present in highly variable counts in beach sand to depths just below the water table and to distances at least 5 m inland from the shore, providing a large potential area of input to beach water. In summary, E. coli in the fluvial-lacustrine system may be stored in forest soils, sediments surrounding springs, bank seeps, stream margins and pools, foreshore sand, and surface groundwater. While rainfall events may increase E. coli counts in the foreshore sand and lake water, concentrations quickly decline to prerain concentrations. Onshore winds cause an increase in E. coli in shallow nearshore water, likely resulting from resuspension of E. coli-laden beach sand. When examining indicator bacteria source, flux, and context, the entire “beachshed” as a dynamic interacting system should be considered

    Image_1_Bacteria common to rhizosphere communities of Asiatic bittersweet across a post-glacial landscape.TIF

    No full text
    Invasive plants such as Asiatic bittersweet (Celastrus orbiculatus Thunb.) are a significant problem for land managers as they impact plant species composition, disrupt nutrient dynamics and structure of native ecosystems, and are difficult to eradicate. As a result of the increasing abundance of Asiatic bittersweet across the eastern U.S., we have been investigating underlying factors potentially contributing to the success of this plant. Recently, ecologists have been investigating the role of plant-soil-microbe interactions contributing to plant invasion. This work has led to question: are there certain microbes (e.g., bacteria, fungi) contributing to the success of some invasive plants? We hypothesize that despite differences in geologic age of soils where Asiatic bittersweet has established in the Indiana Dunes National Park there are sufficient common factors that led to common bacterial taxa in their rhizosphere. The objectives were to determine differences and commonalities in the soil chemistry, plant community and bacterial communities of Asiatic bittersweet plants. To achieve these objectives, bittersweet plants were collected at thirteen locations in the national park from soils ranging in geologic age from 150 to over 14,500 years. Surrounding soil chemistry, plant cover and the 16S rRNA gene amplicon sequences of rhizosphere soil bacterial communities of these Asiatic bittersweet were compared. Asiatic bittersweet coverage of sampling sites ranged from 2 to 77% averaging 52 ± 2%. There were statistically significant differences (p < 0.05) in alpha diversity (Shannon, Faith’s PD and Pielou’s evenness) and beta diversity (Bray Curtis, Jaccard, unweighted Unifrac, weighted Unifrac) among the samples when grouped by soil age or habitat. Despite these differences in the bacterial communities from different soil ages and habitats, some bacterial taxa (e.g., Bacillus, Streptomyces, Sphingomonas and Rhizobiales) previously found in other studies to be beneficial to plant growth were found in every rhizosphere community sampled. These microbes provide insight into a possible contributing factor to the success of this invasive plant at the Indiana Dunes National Park, and a strategy for future work to reduce the impact of Asiatic bittersweet establishment and offer some new strategies to manage this nuisance species.</p

    Table_1_Bacteria common to rhizosphere communities of Asiatic bittersweet across a post-glacial landscape.XLSX

    No full text
    Invasive plants such as Asiatic bittersweet (Celastrus orbiculatus Thunb.) are a significant problem for land managers as they impact plant species composition, disrupt nutrient dynamics and structure of native ecosystems, and are difficult to eradicate. As a result of the increasing abundance of Asiatic bittersweet across the eastern U.S., we have been investigating underlying factors potentially contributing to the success of this plant. Recently, ecologists have been investigating the role of plant-soil-microbe interactions contributing to plant invasion. This work has led to question: are there certain microbes (e.g., bacteria, fungi) contributing to the success of some invasive plants? We hypothesize that despite differences in geologic age of soils where Asiatic bittersweet has established in the Indiana Dunes National Park there are sufficient common factors that led to common bacterial taxa in their rhizosphere. The objectives were to determine differences and commonalities in the soil chemistry, plant community and bacterial communities of Asiatic bittersweet plants. To achieve these objectives, bittersweet plants were collected at thirteen locations in the national park from soils ranging in geologic age from 150 to over 14,500 years. Surrounding soil chemistry, plant cover and the 16S rRNA gene amplicon sequences of rhizosphere soil bacterial communities of these Asiatic bittersweet were compared. Asiatic bittersweet coverage of sampling sites ranged from 2 to 77% averaging 52 ± 2%. There were statistically significant differences (p < 0.05) in alpha diversity (Shannon, Faith’s PD and Pielou’s evenness) and beta diversity (Bray Curtis, Jaccard, unweighted Unifrac, weighted Unifrac) among the samples when grouped by soil age or habitat. Despite these differences in the bacterial communities from different soil ages and habitats, some bacterial taxa (e.g., Bacillus, Streptomyces, Sphingomonas and Rhizobiales) previously found in other studies to be beneficial to plant growth were found in every rhizosphere community sampled. These microbes provide insight into a possible contributing factor to the success of this invasive plant at the Indiana Dunes National Park, and a strategy for future work to reduce the impact of Asiatic bittersweet establishment and offer some new strategies to manage this nuisance species.</p

    Image_2_Bacteria common to rhizosphere communities of Asiatic bittersweet across a post-glacial landscape.TIF

    No full text
    Invasive plants such as Asiatic bittersweet (Celastrus orbiculatus Thunb.) are a significant problem for land managers as they impact plant species composition, disrupt nutrient dynamics and structure of native ecosystems, and are difficult to eradicate. As a result of the increasing abundance of Asiatic bittersweet across the eastern U.S., we have been investigating underlying factors potentially contributing to the success of this plant. Recently, ecologists have been investigating the role of plant-soil-microbe interactions contributing to plant invasion. This work has led to question: are there certain microbes (e.g., bacteria, fungi) contributing to the success of some invasive plants? We hypothesize that despite differences in geologic age of soils where Asiatic bittersweet has established in the Indiana Dunes National Park there are sufficient common factors that led to common bacterial taxa in their rhizosphere. The objectives were to determine differences and commonalities in the soil chemistry, plant community and bacterial communities of Asiatic bittersweet plants. To achieve these objectives, bittersweet plants were collected at thirteen locations in the national park from soils ranging in geologic age from 150 to over 14,500 years. Surrounding soil chemistry, plant cover and the 16S rRNA gene amplicon sequences of rhizosphere soil bacterial communities of these Asiatic bittersweet were compared. Asiatic bittersweet coverage of sampling sites ranged from 2 to 77% averaging 52 ± 2%. There were statistically significant differences (p < 0.05) in alpha diversity (Shannon, Faith’s PD and Pielou’s evenness) and beta diversity (Bray Curtis, Jaccard, unweighted Unifrac, weighted Unifrac) among the samples when grouped by soil age or habitat. Despite these differences in the bacterial communities from different soil ages and habitats, some bacterial taxa (e.g., Bacillus, Streptomyces, Sphingomonas and Rhizobiales) previously found in other studies to be beneficial to plant growth were found in every rhizosphere community sampled. These microbes provide insight into a possible contributing factor to the success of this invasive plant at the Indiana Dunes National Park, and a strategy for future work to reduce the impact of Asiatic bittersweet establishment and offer some new strategies to manage this nuisance species.</p

    Data_Sheet_1_Bacteria common to rhizosphere communities of Asiatic bittersweet across a post-glacial landscape.docx

    No full text
    Invasive plants such as Asiatic bittersweet (Celastrus orbiculatus Thunb.) are a significant problem for land managers as they impact plant species composition, disrupt nutrient dynamics and structure of native ecosystems, and are difficult to eradicate. As a result of the increasing abundance of Asiatic bittersweet across the eastern U.S., we have been investigating underlying factors potentially contributing to the success of this plant. Recently, ecologists have been investigating the role of plant-soil-microbe interactions contributing to plant invasion. This work has led to question: are there certain microbes (e.g., bacteria, fungi) contributing to the success of some invasive plants? We hypothesize that despite differences in geologic age of soils where Asiatic bittersweet has established in the Indiana Dunes National Park there are sufficient common factors that led to common bacterial taxa in their rhizosphere. The objectives were to determine differences and commonalities in the soil chemistry, plant community and bacterial communities of Asiatic bittersweet plants. To achieve these objectives, bittersweet plants were collected at thirteen locations in the national park from soils ranging in geologic age from 150 to over 14,500 years. Surrounding soil chemistry, plant cover and the 16S rRNA gene amplicon sequences of rhizosphere soil bacterial communities of these Asiatic bittersweet were compared. Asiatic bittersweet coverage of sampling sites ranged from 2 to 77% averaging 52 ± 2%. There were statistically significant differences (p < 0.05) in alpha diversity (Shannon, Faith’s PD and Pielou’s evenness) and beta diversity (Bray Curtis, Jaccard, unweighted Unifrac, weighted Unifrac) among the samples when grouped by soil age or habitat. Despite these differences in the bacterial communities from different soil ages and habitats, some bacterial taxa (e.g., Bacillus, Streptomyces, Sphingomonas and Rhizobiales) previously found in other studies to be beneficial to plant growth were found in every rhizosphere community sampled. These microbes provide insight into a possible contributing factor to the success of this invasive plant at the Indiana Dunes National Park, and a strategy for future work to reduce the impact of Asiatic bittersweet establishment and offer some new strategies to manage this nuisance species.</p

    U.S. Recreational Water Quality Criteria: A Vision for the Future

    No full text
    This manuscript evaluates the U.S. Recreational Water Quality Criteria (RWQC) of 2012, based upon discussions during a conference held 11–13 March 2013, in Honolulu, Hawaii. The RWQC of 2012 did not meet expectations among the research community because key recommended studies were not completed, new data to assess risks to bathers exposed to non-point sources of fecal indicator bacteria (FIB) were not developed, and the 2012 RWQC did not show marked improvements in strategies for assessing health risks for bathers using all types of recreational waters. The development of the 2012 RWQC was limited in scope because the epidemiologic studies at beach sites were restricted to beaches with point sources of pollution and water samples were monitored for only enterococci. The vision for the future is development of effective RWQC guidelines based on epidemiologic and quantitative microbial risk assessment (QMRA) studies for sewage specific markers, as well as human enteric pathogens so that health risks for bathers at all recreational waters can be determined. The 2012 RWQC introduced a program for states and tribes to develop site-specific water quality criteria, and in theory this approach can be used to address the limitations associated with the measurements of the traditional FIB
    corecore