48 research outputs found

    Sost and its paralog Sostdc1 coordinate digit number in a Gli3-dependent manner.

    Get PDF
    WNT signaling is critical in most aspects of skeletal development and homeostasis, and antagonists of WNT signaling are emerging as key regulatory proteins with great promise as therapeutic agents for bone disorders. Here we show that Sost and its paralog Sostdc1 emerged through ancestral genome duplication and their expression patterns have diverged to delineate non-overlapping domains in most organ systems including musculoskeletal, cardiovascular, nervous, digestive, reproductive and respiratory. In the developing limb, Sost and Sostdc1 display dynamic expression patterns with Sost being restricted to the distal ectoderm and Sostdc1 to the proximal ectoderm and the mesenchyme. While Sostdc1(-/-) mice lack any obvious limb or skeletal defects, Sost(-/-) mice recapitulate the hand defects described for Sclerosteosis patients. However, elevated WNT signaling in Sost(-/-); Sostdc1(-/-) mice causes misregulation of SHH signaling, ectopic activation of Sox9 in the digit 1 field and preaxial polydactyly in a Gli1- and Gli3-dependent manner. In addition, we show that the syndactyly documented in Sclerosteosis is present in both Sost(-/-) and Sost(-/-); Sostdc1(-/-) mice, and is driven by misregulation of Fgf8 in the AER, a region lacking Sost and Sostdc1 expression. This study highlights the complexity of WNT signaling in skeletal biology and disease and emphasizes how redundant mechanism and non-cell autonomous effects can synergize to unveil new intricate phenotypes caused by elevated WNT signaling

    Genetic evidence that SOST inhibits WNT signaling in the limb

    Get PDF
    AbstractSOST is a negative regulator of bone formation, and mutations in human SOST are responsible for sclerosteosis. In addition to high bone mass, sclerosteosis patients occasionally display hand defects, suggesting that SOST may function embryonically. Here we report that overexpression of SOST leads to loss of posterior structures of the zeugopod and autopod by perturbing anterior–posterior and proximal–distal signaling centers in the developing limb. Mutant mice that overexpress SOST in combination with Grem1 and Lrp6 mutations display more severe limb defects than single mutants alone, while Sost−/− significantly rescues the Lrp6−/− skeletal phenotype, signifying that SOST gain-of-function impairs limb patterning by inhibiting the WNT signaling through LRP5/6

    Vhl deficiency in osteocytes produces high bone mass and hematopoietic defects

    Get PDF
    Tissue oxygen (O2) levels vary during development and disease; adaptations to decreased O2 (hypoxia) are mediated by hypoxia-inducible factor (HIF) transcription factors. HIFs are active in the skeleton, and stabilizing HIF-α isoforms cause high bone mass (HBM) phenotypes. A fundamental limitation of previous studies examining the obligate role for HIF-α isoforms in the skeleton involves the persistence of gene deletion as osteolineage cells differentiate into osteocytes. Because osteocytes orchestrate skeletal development and homeostasis, we evaluated the influence of Vhl or Hif1a disruption in osteocytes. Osteocytic Vhl deletion caused HBM phenotype, but Hif1a was dispensable in osteocytes. Vhl cKO mice revealed enhanced canonical Wnt signaling. B cell development was reduced while myelopoiesis increased in osteocytic Vhl cKO, revealing a novel influence of Vhl/HIF-α function in osteocytes on maintenance of bone microarchitecture via canonical Wnt signaling and effects on hematopoiesis

    Sostdc1 deficiency accelerates fracture healing by promoting the expansion of periosteal mesenchymal stem cells

    Get PDF
    Loss of Sostdc1, a growth factor paralogous to Sost, causes the formation of ectopic incisors, fused molars, abnormal hair follicles, and resistance to kidney disease. Sostdc1 is expressed in the periosteum, a source of osteoblasts, fibroblasts and mesenchymal progenitor cells, which are critically important for fracture repair. Here, we investigated the role of Sostdc1 in bone metabolism and fracture repair. Mice lacking Sostdc1 (Sostdc1−/−) had a low bone mass phenotype associated with loss of trabecular bone in both lumbar vertebrae and in the appendicular skeleton. In contrast, Sostdc1−/− cortical bone measurements revealed larger bones with higher BMD, suggesting that Sostdc1 exerts differential effects on cortical and trabecular bone. Mid-diaphyseal femoral fractures induced in Sostdc1−/− mice showed that the periosteal population normally positive for Sostdc1 rapidly expands during periosteal thickening and these cells migrate into the fracture callus at 3 days post fracture. Quantitative analysis of mesenchymal stem cell (MSC) and osteoblast populations determined that MSCs express Sostdc1, and that Sostdc1−/− 5 day calluses harbor > 2-fold more MSCs than fractured wildtype controls. Histologically a fraction of Sostdc1-positive cells also expressed nestin and α-smooth muscle actin, suggesting that Sostdc1 marks a population of osteochondral progenitor cells that actively participate in callus formation and bone repair. Elevated numbers of MSCs in D5 calluses resulted in a larger, more vascularized cartilage callus at day 7, and a more rapid turnover of cartilage with significantly more remodeled bone and a thicker cortical shell at 21 days post fracture. These data support accelerated or enhanced bone formation/remodeling of the callus in Sostdc1−/− mice, suggesting that Sostdc1 may promote and maintain mesenchymal stem cell quiescence in the periosteum

    Conditional Deletion of Sost in MSC‐derived lineages Identifies Specific Cell Type Contributions to Bone Mass and B Cell Development

    Get PDF
    Sclerostin (Sost) is a negative regulator of bone formation and blocking its function via antibodies has shown great therapeutic promise by increasing both bone mass in humans and animal models. Sclerostin deletion in Sost knockout mice (Sost‐/‐) causes high bone mass (HBM) similar to Sclerosteosis patients. Sost‐/‐ mice have been shown to display an up to 300% increase in bone volume/total volume (BV/TV), relative to aged matched controls, and it has been postulated that the main source of skeletal Sclerostin is the osteocyte. To understand the cell‐type specific contributions to the HBM phenotype described in Sost‐/‐ mice, as well as to address the endocrine and paracrine mode of action of sclerostin, we examined the skeletal phenotypes of conditional Sost loss‐of‐function (SostiCOIN/iCOIN) mice with specific deletions in (1) the limb mesenchyme (Prx1‐Cre; targets osteoprogenitors and their progeny); (2) mid‐stage osteoblasts and their progenitors (Col1‐Cre); (3) mature osteocytes (Dmp1‐Cre) and (4) hypertrophic chondrocytes and their progenitors (ColX‐Cre). All conditional alleles resulted in significant increases in bone mass in trabecular bone in both the femur and lumbar vertebrae, but only Prx1‐Cre deletion fully recapitulated the amplitude of the HBM phenotype in the appendicular skeleton and the B cell defect described in the global knockout. Despite wildtype expression of Sost in the axial skeleton of Prx1‐Cre deleted mice, these mice also had a significant increase in bone mass in the vertebrae, but the Sclerostin released in circulation by the axial skeleton did not affect bone parameters in the appendicular skeleton. Also, both Col1 and Dmp1 deletion resulted in a similar 80% significant increase in trabecular bone mass, but only Col1 and Prx1 deletion resulted in a significant increase in cortical thickness. We conclude that several cell types within the Prx1‐osteoprogenitor derived lineages contribute significant amounts of Sclerostin protein to the paracrine pool of Sost, in bone

    Single-cell RNA-Seq reveals changes in immune landscape in post-traumatic osteoarthritis

    Get PDF
    Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people world-wide. Accumulating evidence attests to the important roles of the immune system in OA pathogenesis. Understanding the role of various immune cells in joint degeneration or joint repair after injury is vital for improving therapeutic strategies for treating OA. Post-traumatic osteoarthritis (PTOA) develops in ~50% of individuals who have experienced an articular trauma like an anterior cruciate ligament (ACL) rupture. Here, using the high resolution of single-cell RNA sequencing, we delineated the temporal dynamics of immune cell accumulation in the mouse knee joint after ACL rupture. Our study identified multiple immune cell types in the joint including neutrophils, monocytes, macrophages, B cells, T cells, NK cells and dendritic cells. Monocytes and macrophage populations showed the most dramatic changes after injury. Further characterization of monocytes and macrophages reveled 9 major subtypes with unique transcriptomics signatures, including a tissue resident Lyve1hiFolr2hi macrophage population and Trem2hiFcrls+ recruited macrophages, both showing enrichment for phagocytic genes and growth factors such as Igf1, Pdgfa and Pdgfc. We also identified several genes induced or repressed after ACL injury in a cell type-specific manner. This study provides new insight into PTOA-associated changes in the immune microenvironment and highlights macrophage subtypes that may play a role in joint repair after injury

    Global Gene Expression Analysis of Murine Limb Development

    Get PDF
    Detailed information about stage-specific changes in gene expression is crucial for understanding the gene regulatory networks underlying development and the various signal transduction pathways contributing to morphogenesis. Here we describe the global gene expression dynamics during early murine limb development, when cartilage, tendons, muscle, joints, vasculature and nerves are specified and the musculoskeletal system of limbs is established. We used whole-genome microarrays to identify genes with differential expression at 5 stages of limb development (E9.5 to 13.5), during fore- and hind-limb patterning. We found that the onset of limb formation is characterized by an up-regulation of transcription factors, which is followed by a massive activation of genes during E10.5 and E11.5 which levels off at later time points. Among the 3520 genes identified as significantly up-regulated in the limb, we find ∌30% to be novel, dramatically expanding the repertoire of candidate genes likely to function in the limb. Hierarchical and stage-specific clustering identified expression profiles that are likely to correlate with functional programs during limb development and further characterization of these transcripts will provide new insights into specific tissue patterning processes. Here, we provide for the first time a comprehensive analysis of developmentally regulated genes during murine limb development, and provide some novel insights into the expression dynamics governing limb morphogenesis
    corecore