185 research outputs found

    Nitrogen uptake and regeneration pathways in the equatorial Pacific: a basin scale modeling study

    Get PDF
    It is well known that most primary production is fueled by regenerated nitrogen in the open ocean. Therefore, studying the nitrogen cycle by focusing on uptake and regeneration pathways would advance our understanding of nitrogen dynamics in the marine ecosystem. Here, we carry out a basin-scale modeling study, by assessing model simulations of nitrate and ammonium, and rates of nitrate uptake, ammonium uptake and regeneration in the equatorial Pacific. Model-data comparisons show that the model is able to reproduce many observed features of nitrate, ammonium, such as the deep ammonium maximum (DAM). The model also reproduces the observed de-coupling of ammonium uptake and regeneration, i.e., regeneration rate greater than uptake rate in the lower euphotic zone. The de-coupling largely explains the observed DAM in the equatorial Pacific Ocean. Our study indicates that zooplankton excretion and remineralization of organic nitrogen play a different role in nitrogen regeneration. Rates of zooplankton excretion vary from <0.01 mmol m<sup>−3</sup> d<sup>−1</sup> to 0.1 mmol m<sup>−3</sup> d<sup>−1</sup> in the upper euphotic zone while rates of remineralization fall within a narrow range (0.015–0.025 mmol m<sup>−3</sup> d<sup>−1</sup> . Zooplankton excretion contributes up to 70% of total ammonium regeneration in the euphotic zone, and is largely responsible for the spatial variability of nitrogen regeneration. However, remineralization provides a steady supply of ammonium in the upper ocean, and is a major source of inorganic nitrogen for the oligotrophic regions. Overall, ammonium generation and removal are approximately balanced over the top 150 m in the equatorial Pacific

    A Simulation of Biological Prosesses in the Equatorial Pacific Warm Pool at 165 deg E

    Get PDF
    A nine-year simulation (1984-1992) of biological processes in the equatorial Pacific Warm Pool is presented. A modified version of the 4-component (phytoplankton, zooplankton, nitrate and ammonium) ecosystem model by McClain et al. (1996) is used. Modifications include use of a spectral model for computation of PAR and inclusion of fecal pellet remineralization and ammonium nitrification. The physical parameters (horizontal and vertical velocities and temperature) required by the ecosystem model were derived from an improved version of the Gent and Cane (1990) ocean general circulation model (Murtugudde and Busalacchi, 1997). Surface downwelling spectral irradiance was estimated using the clear-sky models of Frouin et al. (1989) and Gregg and Carder (1990) and cloud cover information from the International Satellite Cloud Climatology Project (ISCCP). The simulations indicate considerable variability on interannual time scales in all four ecosystem components. In particular, surface chlorophyll concentrations varied by an order of magnitude with maximum values exceeding 0.30 mg/cu m in 1988, 1989, and 1990, and pronounced minimums during 1987 and 1992. The deep chlorophyll maximum ranged between 75 and 125 meters with values occasionally exceeding 0.40 mg/cu m. With the exception of the last half of 1988, surface nitrate was always near depletion. Ammonium exhibited a subsurface maximum just below the DCM with concentrations as high as 0.5 mg-atN/cu m . Total integrated annual primary production varied between 40 and 250 gC/sq m/yr with an annual average of 140 gC/sq m/yr. Finally, the model is used to estimate the mean irradiance at the base of the mixed layer, i.e., the penetration irradiance, which was 18 Watts/sq m over the nine year period. The average mixed layer depth was 42 m

    Biophysical feedbacks in the tropical Pacific

    Get PDF
    This study explores the influence of phytoplankton on the tropical Pacific heat budget. A hybrid coupled model for the tropical Pacific that is based on a primitive equation reduced-gravity multilayer ocean model, a dynamic ocean mixed layer, an atmospheric mixed layer, and a statistical atmosphere is used. The statistical atmosphere relates deviations of the sea surface temperature from its mean to wind stress anomalies and allows for the rectification of the annual cycle and the El Niño–Southern Oscillation (ENSO) phenomenon through the positive Bjerknes feedback. Furthermore, a nine-component ecosystem model is coupled to the physical variables of the ocean. The simulated chlorophyll concentrations can feed back onto the ocean heat budget by their optical properties, which modify solar light absorption in the surface layers. It is shown that both the surface layer concentration as well as the vertical profile of chlorophyll have a significant effect on the simulated mean state, the tropical annual cycle, and ENSO. This study supports a previously suggested hypothesis (Timmermann and Jin) that predicts an influence of phytoplankton concentration of the tropical Pacific climate mean state and its variability. The bioclimate feedback diagnosed here works as follows: Maxima in the subsurface chlorophyll concentrations lead to an enhanced subsurface warming due to the absorption of photosynthetically available shortwave radiation. This warming triggers a deepening of the mixed layer in the eastern equatorial Pacific and eventually a reduction of the surface ocean currents (Murtugudde et al.). The weakened south-equatorial current generates an eastern Pacific surface warming, which is strongly enhanced by the Bjerknes feedback. Because of the deepening of the mixed layer, the strength of the simulated annual cycle is also diminished. This in turn leads to an increase in ENSO variability

    Spatial and temporal variations in dissolved and particulate organic nitrogen in the equatorial Pacific: biological and physical influences

    Get PDF
    To quote Libby and Wheeler (1997), "we have only a cursory knowledge of the distributions of dissolved and particulate organic nitrogen" in the equatorial Pacific. A decade later, we are still in need of spatial and temporal analyses of these organic nitrogen pools. To address this issue, we employ a basin scale physical-biogeochemical model to study the spatial and temporal variations of dissolved organic nitrogen (DON) and particulate organic nitrogen (PON). The model is able to reproduce many observed features of nitrate, ammonium, DON and PON in the central and eastern equatorial Pacific, including the asymmetries of nitrate and ammonium, and the meridional distributions of DON and PON. Modeled DON (5–8 mmol m<sup>−3</sup>) shows small zonal and meridional variations in the mixed layer whereas modeled PON (0.4–1.5 mmol m<sup>−3</sup>) shows considerable spatial variability. While there is a moderate seasonality in both DON and PON in the mixed layer, there is a much weaker interannual variability in DON than in PON. The interannual variability in PON is largely associated with the El Niño/Southern Oscillation (ENSO) phenomenon, showing high values during cold ENSO phase but low values during warm ENSO phase. Overall, DON and PON have significant positive correlations with phytoplankton and zooplankton in the mixed layer, indicting the biological regulation on distribution of organic nitrogen. However, the relationships with phytoplankton and zooplankton are much weaker for DON (r=0.18–0.71) than for PON (r=0.25–0.97). Such a difference is ascribed to a relatively larger degree of physical control (e.g., upwelling of low-organic-N deep waters into the surface) on DON than PON

    The Indian Ocean Deep Meridional Overturning Circulation in Three Ocean Reanalysis Products

    Get PDF
    The time mean Indian Ocean (IO) deep meridional overturning circulation (MOC) is compared across three ocean reanalysis products (ORAS4, GECCO2, and GFDL). The MOC stream functions obtained by vertically integrating the mass flux across a latitude-depth section in three products are found to be significantly different from each other. Detailed analysis suggests that ORAS4 delivers the best depiction of IO MOC. The inferred IO deep MOC consists of two deep and strong counterclockwise cells located south of 30°S and around 10°S, respectively. The geostrophic component along with the barotropic or external mode dominates the former, and a combination of Ekman and geostrophic components dominates the latter. GECCO2 depicts a steady decline in the northward meridional transport in the bottom layer and a consequent reduction in the MOC strength. The tropical thermocline in GECCO2 responds to this MOC variability leading to rapid and monotonic warming of the tropical IO

    An Iron-Based Ecosystem Model of the Central Equatorial Pacific

    Get PDF
    The central and eastern equatorial Pacific region is characterized by lower than expected phytoplankton biomass and primary production given the relatively high ambient nitrate concentrations. These unusual conditions have spawned several field programs and laboratory experiments to determine why this high nitrate-low chlorophyll pattern persists in this region. To synthesize the results from these field programs, as well as providing additional evidence in support of the iron hypothesis, we developed a one-dimensional, nine-component ecosystem model of 0 degrees N 140 degrees W. The model components include two phytoplankton size fractions, two zooplankton size fractions, two detrital size fractions, dissolved iron, nitrate, and ammonium. The model was run for 5 years (1990-1994) and was forced using an atmospheric radiative transfer model, an ocean general circulation model (GCM), and in situ data. To our knowledge, this is the first ecosystem model at 0 degrees N 140 degrees W to synthesize the Joint Global Ocean Flux Study Equatorial Pacific Process Study (JGOFS EqPac) data set, as well as to use both in situ and modeled physical data to drive the model. Modeled phytoplankton, zooplankton, and iron all varied on interannual timescales due to El Nino events. Total phytoplankton biomass increased by as much as 40% from early 1992 (El Nino warm) to 1993 (normal). The results also indicate that the biomass increase during a cool period is not constant for each phytoplankton component, but instead the increase is most evident in the netphytoplankton (\u3e10 mu m). Netphytoplankton increase from a low of 0.1% of the total chlorophyll in 1992 to a high of 30% of the total in 1993. Microzooplankton grazing rates fluctuated in response to changes in nanophytoplankton growth rates, whereas mesozooplankton grazing was unrelated to netphytoplankton growth rates. The magnitude and temporal variability of phytoplankton chlorophyll agreed well with in situ data collected during 1992. Modeled primary production was lower than measured during El Nino but agreed with observations during normal conditions. The low primary productivity was probably a result of downwelling produced by the physical model. New production was calculated from total and recycled iron rather than nitrate-based production and was more variable in general and almost 3 times the nitrate-based new production during non-El Nino conditions

    The Role of the Indian Ocean Sector for Prediction of the Coupled Indo-Pacific System: Impact of Atmospheric Coupling

    Get PDF
    Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times

    Inconsistent Atmosphere‐Ocean Dynamics and Multidecadal Zonal SST Gradient Trends Across the Equatorial Pacific Ocean in Reanalysis Products

    Get PDF
    Ocean reanalysis products are routinely employed as reality checks in model evaluations and for process studies. This is especially so for critical regions such as the equatorial cold tongue (ECT) in the eastern equatorial Pacific where models suffer a chronic cold bias. ECT is a major player in the Pacific equatorial zonal sea surface temperature (SST) gradient (ΔEWSST) that has a significant impact on oceanic heat uptake and thus global climate. Hence, we investigate the reliability of three ocean reanalysis products for surface flux and ocean dynamic controls on ΔEWSST and Niño3.4 SST trends. We infer that while Niño3.4 SST trends are positive in all products, the signs of ΔEWSST trends do not agree with each other because initial conditions likely play a big role in their evolution. However, for ΔEWSST trends, the effect of initial conditions gets canceled out to some extent. Mixed layer heat budget and trends in ocean dynamic features such as tropical and subtropical cells, equatorial undercurrent, and subsurface temperatures are also diagnosed. We show that two reanalysis products that show a strengthening of ΔEWSST have contradicting trends in their surface heat flux and ocean dynamic contributions. This suggests that without accurate surface heat and momentum fluxes, data assimilation techniques may produce an east–west trend that is inconsistent among each other. Reanalysis products must address these issues considering the importance of this gradient

    United States contributions to the Second International Indian Ocean Expedition (US IIOE-2)

    Get PDF
    From the Preface: The purpose of this document is to motivate and coordinate U.S. participation in the Second International Indian Ocean Expedition (IIOE-2) by outlining a core set of research priorities that will accelerate our understanding of geologic, oceanic, and atmospheric processes and their interactions in the Indian Ocean. These research priorities have been developed by the U.S. IIOE-2 Steering Committee based on the outcomes of an interdisciplinary Indian Ocean science workshop held at the Scripps Institution of Oceanography on September 11-13, 2017. The workshop was attended by 70 scientists with expertise spanning climate, atmospheric sciences, and multiple sub-disciplines of oceanography. Workshop participants were largely drawn from U.S. academic institutions and government agencies, with a few experts invited from India, China, and France to provide a broader perspective on international programs and activities and opportunities for collaboration. These research priorities also build upon the previously developed International IIOE-2 Science Plan and Implementation Strategy. Outcomes from the workshop are condensed into five scientific themes: Upwelling, inter-ocean exchanges, monsoon dynamics, inter-basin contrasts, marine geology and the deep ocean. Each theme is identified with priority questions that the U.S. research community would like to address and the measurements that need to be made in the Indian Ocean to address them.We thank the following organizations and programs for financial contributions, support and endorsement: the U.S. National Oceanic and Atmospheric Administration; the U.S. Ocean Carbon and Biogeochemistry program funded by the National Science Foundation and the National Aeronautics and Space Administration; the NASA Physical Oceanography Program; Scripps Institution of Oceanography; and the Indo-US Science and Technology Forum
    corecore