32 research outputs found

    Short thermal treatment of carbon felts for copper-based redox flow batteries

    Get PDF
    Carbon felts are often used as electrode materials for various redox flow batteries (RFBs), and for optimal performance it is often required for them to be subjected to extended thermal treatment processes (25–30 h). However, the Cu(II)/Cu(I) redox couple employed in the copper RFB, at the positive electrode is significantly different when compared to the vanadium alternative. For this reason, the effect and duration of thermal treatment of the carbon felt on the performance of the copper-based RFB has to be determined. Both polyacrylonitrile and rayon carbon felts were subjected to thermal treatment for 6 and 25 h at 400 °C. The treated carbon felts were subsequently analysed using thermogravimetric analysis, resistivity determination, scanning electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Additionally, the effect of the thermal treatment was also determined using electrochemical testing and in a redox flow cell

    Mechanical Effects of the Nonuniform Current Distribution on HTS Coils for Accelerators Wound With REBCO Roebel Cable

    Get PDF
    Future high-energy accelerators will need very high magnetic fields in the range of 20 T. The EuCARD-2 WP10 Future Magnets collaboration is aiming at testing HTS-based Roebel cables in an accelerator magnet. The demonstrator should produce around 17 T, when inserted into the 100-mm aperture of Feather-M2 13-T outsert magnet. HTS Roebel cables are assembled from meander-shaped REBCO-coated conductor tapes. In comparison with fair level of uniformity of current distribution in cables made out of round Nb-Ti or Nb3Sn strands, current distribution within the coils wound from Roebel cables is highly nonhomogeneous. It results in nonuniform electromagnetic force distribution over the cable that could damage the very thin REBCO superconducting layer. This paper focuses on the numerical models to describe the effect of the nonhomogeneous current distribution on stress distribution in the demonstrator magnet designed for the EuCARD-2 project. Preliminary results indicate that the impregnation bonding between the cable glass fiber insulation and layer-to-layer insulation plays a significant role in the pressure distribution at the cable edges. The stress levels are safe for Roebel cables. Assuming fully bonded connection at the interface, the stresses around the edges are reduced by a large factor

    Genetic study of common variants at the Apo E, Apo AI, Apo CIII, Apo B, lipoprotein lipase (LPL) and hepatic lipase (LIPC) genes and coronary artery disease (CAD): variation in LIPC gene associates with clinical outcomes in patients with established CAD

    Get PDF
    BACKGROUND: Current evidence demonstrates that positive family history and several alterations in lipid metabolism are all important risk factors for coronary artery disease (CAD). All lipid abnormalities themselves have genetic determinants. Thus, objective of this study was to determine whether 6 genetic variants potentially related to altered lipid metabolism were associated with CAD and with lipid abnormalities in an Italian population. These genetic variables were: apolipoprotein E (Apo E), Apo AI, Apo CIII, Apo B, lipoprotein lipase (LPL) and the hepatic lipase (LIPC) genes. Furthermore, an 8 years prospective analysis of clinical cardiovascular events was related to the various genetic markers. METHODS: 102 subjects with established coronary artery disease and 104 unrelated normal subjects were studied. CAD Patients were followed up for 8 years, and clinical CAD outcomes (a second coronary angioplasty (PTCA), myocardial infarction, coronary artery by-pass graft (CABG), cardiovascular deaths), available from 60 subjects, were related to the genetic variants by multiple regression analysis. Results. Of the six lipid loci studied (for a total of 11 polymorphisms) only the apolipoprotein E, Apo B and LIPC polymorphisms distinguished between case and controls. However, multivariate analysis accounting for clinical and metabolic predictors of CAD showed that only the ApoB Xba1 and ApoE4 polymorphism associated with CAD in this Italian population. When lipid parameters were related to genotypes, the ApoE, ApoB, and LIPC gene polymorphisms were associated to various markers of dyslipidaemia in the CAD patients, confirming previous reports. When the occurrence of a second cardiovascular event was related to genotypes, an independent role was observed for the LIPC gene T202T variant. CONCLUSIONS: variation in LIPC (hepatic lipase) gene associates with clinical outcomes in Italian patients with established CAD. Further studies on the LIPC gene in CAD patients are warranted, in particular looking at the possible influences on clinical outcomes

    3-D mechanical modeling of 20 T HTS clover leaf end coils : Good practices and lessons learned

    No full text
    Very high electromagnetic forces are generated in the superconducting coils of high field accelerator magnets. The cables, which are used to wind the coils, can withstand limited pressure levels and strains generated during the powering without degradation. To protect the cables from mechanical damage, reliable prediction of strain and stress inside the coil is paramount for designing suitable support structure of the magnet. This is naturally done before a magnet is built and tested, which emphasizes the need for reliable modeling. Conventionally, the mechanics in superconducting coils are modeled assuming homogenized material properties inside a homogenized coil volume. Using this so-called coil block approach, predicting the actual cable strain or stress inside the homogenized volume is unreliable. In order to predict reliably the stress in the cable, more detailed representation of the modeling domain is needed. This paper presents a workflow to perform a detailed mechanical analysis using finite-element analysis following the envisioned and more detailed approach. As an example, a high field 20 T+ magnet with clover leaf ends is studied, and results are discussed. The results reveal considerable difference between the behavior of modeled homogenized coil blocks and coils where turns are individually considered

    ICED - Inductively Coupled Energy Dissipater for Future High-Field Accelerator Magnets

    No full text
    Future high-field accelerator magnets, like the ones foreseen in the design study of the FCC project and for the EuCARD2 "Future Magnets" program, operate with magnetic fields in the range of 16-20 T. For such magnets the energy density is higher than in the accelerator magnets at present in operation, posing a challenge for the quench protection. Traditionally, quench protection has relied on generating large normal zones in the coil by firing quench protection heaters. The increase of the coil internal resistance results in a fast current decay. This paper introduces the Inductively Coupled Energy Dissipater (ICED) system, based on low resistance loops, which are inductively coupled with the coil. These loops greatly accelerate the current decay by rapidly extracting the energy from the coil, thereby lowering its peak temperature. Because of the potential reduction in stabilizer volume within the conductor, ICED may enable higher engineering current densities in the coil than with the protection relying entirely on dissipating the magnet's energy in the windings. The efficiency of ICED as a passive quench protection system is studied in this paper. We present the effect of such protection structure, on the field quality during standard powering of the magnets and on the cryogenic system. We study electromagnetic forces in the loops and mechanically stable geometric locations within the magnet structure. For the proof of the concept, this system has been employed in Feather-M2 dipole demonstrator. We compare our modeling approach to results gained from a cryogenic test

    Investigation of REBCO Roebel Cable Irreversible Critical Current Degradation under Transverse Pressure

    No full text
    The Roebel cable utilized in High Field accelerator magnets is subject to high transversal electromagnetic forces. The conductor response to exerted pressure depends from the geometry and materials of the cable. A transverse loading test was performed for an impregnated cable in cryogenic conditions. The test revealed Roebel cable being able to withstand elevated average pressure level common to dipole magnets, when the pressure load is exerted by a stiff press tool. However, the mechanism for irreversible current degradation during the transverse loading during powering remains so far unknown. This paper focuses on finding likely failure mechanisms when a magnet is powered. The cable is wound with a glass-fiber sleeve and impregnated with epoxy. Epoxy has much lower stiffness than the coated conductor. When the cable is subjected to transverse loading, abrupt changes in cable thickness and material properties may lead to irreversible degradation of the conductor. As the tape crosses the epoxy-filled central gap region of the cable, the discontinuous change of the support stiffness generates bending strains and shear stress in the conductor. The cable is mechanically modeled. By modeling, the measured axial strain limit of the conductor is connected to transverse pressure limit of the cable

    Layout Study for the Dipole Magnets of the Future Circular Collider Using Nb-Ti and Nb3_{3}Sn

    Get PDF
    With the Large Hadron Collider (LHC) up and running, studies have started for its successor. Under study is the Future Circular Collider (FCC), which has a circumference of about 100 km, aiming at a proton–proton collision energy of 100 TeV. Consequently, the main bending dipole magnets have to operate at a magnetic field of 16 T. As a first step towards its realization, this paper presents the results of a parametric study of the cross-sectional layout for dipole magnets with a field in the range of 13–17 T using Nb–Ti and Nb_3Sn superconductors. The principal layouts included are the classical Cosine-Theta, the Canted Cosine-Theta, and the Block type. Conductor cost can be reduced significantly when a graded hybrid solution is chosen. Optimizing such complex magnet layouts requires an iterative algorithm, which arranges the positions of the various blocks of coil windings in the coil cross section, thereby finding the thickness of the coil layers. The iterative algorithm is coupled to an adiabatic quench model, which finds an optimal copper-to-superconductor fraction for each of the layers. Outside the iterative cycle, a pattern search algorithm is applied to find a cost optimal distribution of the magnetic field generated by each coil layer

    A fast quench protection system for higherature superconducting magnets

    No full text
    For reaching very high magnetic fields in fully superconducting magnets, beyond 16 T for particle accelerators dipoles and beyond 23 T for solenoids, the use of higherature superconductors (HTS) is unavoidable. Due to the high minimum quench energy in HTS these coils are much more difficult to protect against quenches using conventional methods, such as quench heaters or coupling loss induced quench (CLIQ). Although it is possible to use a dump resistor on a short HTS magnet, extracting the energy externally, this does not provide a solution for longer magnets or magnets operated in a string, because the extraction voltage becomes unacceptably high. Here, a method named E3SPreSSO (External Energy Extraction Symbiotic Protection System for Series Operation) is proposed that allows for fast energy extraction in HTS magnets. The E3SPreSSO comprises of units with a near-zero self-inductance superconducting circuit, connected in series with the main magnet. When the protection is triggered, these devices are turned resistive, using quench heaters, overcurrent or CLIQ, causing them to absorb the energy of the system. The units can be located outside the main magnet and do not generate magnetic field. Therefore, it is possible to use relatively cost-efficient and robust Nb-Ti or possibly MgB2 (at higher temperatures). This paper introduces the concept and provides an analytical method weighing the different options for designing the E3SPreSSO units themselves
    corecore