12 research outputs found

    Gaussian Mixture Kalman Predictive Coding of Line Spectral Frequencies

    No full text
    Gaussian mixture model (GMM)-based predictive coding of line spectral frequencies (LSFs) has gained wide acceptance. In such coders, each mixture of a GMM can be interpreted as defining a linear predictive transform coder. In this paper, we use Kalman filtering principles to model each of these linear predictive transform coders to present GMM Kalman predictive coding. In particular, we show how suitable modeling of quantization noise leads to an adaptive a posteriori GMM that defines a signal-adaptive predictive coder that provides improved coding of LSFs in comparison with the baseline recursive GMM predictive coder. Moreover, we show how running the GMM Kalman predictive coders to convergence can be used to design a stationary GMM Kalman predictive coding system which again provides improved coding of LSFs but now with only a modest increase in run-time complexity over the baseline. In packet loss conditions, this stationary GMM Kalman predictive coder provides much better performance than the recursive GMM predictive coder, and in fact has comparable mean performance to a memoryless GMM coder. Finally, we illustrate how one can utilize Kalman filtering principles to design a postfilter which enhances decoded vectors from a recursive GMM predictive coder without any modifications to the encoding process

    Sparse Linear Prediction and its applicatioin to speech processing

    No full text
    The aim of this paper is to provide an overview of Sparse Linear Prediction, a set of speech processing tools created by introducing sparsity constraints into the linear prediction framework. These tools have shown to be effective in several issues related to modeling and coding of speech signals. For speech analysis, we provide predictors that are accurate in modeling the speech production process and overcome problems related to traditional linear prediction. In particular, the predictors obtained offer a more effective decoupling of the vocal tract transfer function and its underlying excitation, making it a very efficient method for the analysis of voiced speech. For speech coding, we provide predictors that shape the residual according to the characteristics of the sparse encoding techniques resulting in more straightforward coding strategies. Furthermore, encouraged by the promising application of compressed sensing in signal compression, we investigate its formulation and application to sparse linear predictive coding. The proposed estimators are all solutions to convex optimization problems, which can be solved efficiently and reliably using, e.g., interior-point methods. Extensive experimental results are provided to support the effectiveness of the proposed methods, showing the improvements over traditional linear prediction in both speech analysis and coding. © 2006-2012 IEEE.status: publishe

    Family, community, and educational outcomes in South Asia

    No full text
    In this article, we review research on the economics and sociology of education to assess the relationships between family and community variables and children's educational outcomes in South Asia. At the family level, we examine the variables of family socioeconomic status (SES), parental education, family structure, and religion and caste. At the community level, we assess the limited research on the relationships between economic, cultural, and social characteristics and children's educational outcomes. The literature presents several consistent relationships between the roles of family and community characteristics in determining educational outcomes and reveals several possibilities for further research. © 2010 UNESCO IBE
    corecore