96 research outputs found

    A QoE Model for Mulsemedia TV in a Smart Home Environment

    Get PDF
    The provision to the users of realistic media contents is one of the main goals of future media services. The sense of reality perceived by the user can be enhanced by adding various sensorial effects to the conventional audio-visual content, through the stimulation of the five senses stimulation (sight, hearing, touch, smell and taste), the so-called multi-sensorial media (mulsemedia). To deliver the additional effects within a smart home (SH) environment, custom devices (e.g., air conditioning, lights) providing opportune smart features, are preferred to ad-hoc devices, often deployed in a specific context such as for example in gaming consoles. In the present study, a prototype for a mulsemedia TV application, implemented in a real smart home scenario, allowed the authors to assess the user's Quality of Experience (QoE) through test measurement campaign. The impact of specific sensory effects (i.e., light, airflow, vibration) on the user experience regarding the enhancement of sense of reality, annoyance, and intensity of the effects was investigated through subjective assessment. The need for multi sensorial QoE models is an important challenge for future research in this field, considering the time and cost of subjective quality assessments. Therefore, based on the subjective assessment results, this paper instantiates and validates a parametric QoE model for multi-sensorial TV in a SH scenario which indicates the relationship between the quality of audiovisual contents and user-perceived QoE for sensory effects applications

    Multicasting Over 6G Non-Terrestrial Networks: A Softwarization-Based Approach

    Get PDF
    Multicast/broadcast delivery is a critical challenge of future 6G mobile networks where massive Internet of Things (IoT) deployment and extended reality multimedia such as teleportation are target application scenarios. Non-terrestrial networks (NTNs) are considered essential for the success of 6G, which aims to provide true 'global' services by extending mobile access worldwide, thus overcoming the coverage limit of current terrestrial networks (TNs). This article discusses how the main distinguishing features of NTNs can be effectively exploited for 6G multicasting. Furthermore, in line with the evolution of future 6G networks toward softwarized systems, we evaluate the potential of using the softwarization paradigm in the heterogeneous TN-NTN architecture to deliver multicast services

    IEEE Access Special Section Editorial: Biologically Inspired Image Processing Challenges and Future Directions

    Get PDF
    Human kind is exposed to large amounts of data. According to statistics, more than 80% of information received by humans comes from the visual system. Therefore, image information processing is not only an important research topic but also a challenging task. The unique information processing mechanism of the human visual system provides it with fast, accurate, and efficient image processing capabilities. At present, many advanced image analysis and processing techniques have been widely used in image communication, geographic information systems, medical image analysis, and virtual reality. However, there is still a large gap between these technologies and the human visual system. Therefore, building an image system research mechanism based on the biological vision system is an attractive but difficult target. Although it is a challenge, it can also be considered as an opportunity which utilizes biologically inspired ideas. Meanwhile, through the integration of neural biology, biological perception mechanisms, and computer science and mathematical science, related research can bridge biological vision and computer vision. Finally, the biologically inspired image analysis and processing system is expected to be built on the basis of further consideration of the learning mechanism of the human brain

    From Things to Services: A Social IoT Approach for Tourist Service Management

    Get PDF
    In the context of Internet of Things (IoT), the cooperation and synergy between varied and disparate communicating objects is strained by trustworthiness, confidentiality and interoperability concerns. These restrictions can limit the development of IoT-based applications especially considering the emergent boost in the number of communicating objects and their growing itinerant nature in a collective service context. A new perspective arises with the paradigm of Social Internet of Things (SIoT), that relies on the implementation of semi-independent communicating objects with cooperation assessed by social relations and social feed-back. In this article, we present the development and expansion of the IoT concept towards SIoT in the context of the interactions between tourist services as communicating objects. As a proof-of-concept we propose a composition of services as virtualized social objects and the interaction between them, by taking into consideration the balance, trustworthiness, cooperation and synergy of services. Furthermore we present a solution to integrate also accessibility in SIoT services. The presented concept is presented using a demonstrator build for tourist services

    On the feasibility of unlicensed communications in the TV white space: Field measurements in the UHF band

    Get PDF
    In practical unlicensed communications in TV band, radio devices have to identify, at first, the transmission opportunities, that is, the portion of the spectrum licensed for broadcasting services unoccupied in a certain region at certain time, that is, the so-called TV white space. In this paper the outcome of field measurements in the UHF TV band (470-860 MHz) conducted in EU is presented. To obtain empirical values for the parameters upon which unlicensed radio devices are able to distinguish in a real scenario between empty and occupied TV channels, signal power measurements have been performed in Italy, Spain, and Romania on rural, suburban, and urban sites, at different heights over the ground by using different analysis bandwidths. The aim of this work is to provide a set of practical parameters upon which harmless unlicensed communication in the UHF TV white space is feasible. The results have been analyzed with respect to the hidden node margin problem, spectrum sensing bandwidth, and occupancy threshold

    From MFN to SFN: Performance Prediction Through Machine Learning

    Get PDF
    In the last decade, the transition of digital terrestrial television (DTT) systems from multi-frequency networks (MFNs) to single-frequency networks (SFNs) has become a reality. SFN offers multiple advantages concerning MFN, such as more efficient management of the radioelectric spectrum, homogenizing the network parameters, and a potential SFN gain. However, the transition process can be cumbersome for operators due to the multiple measurement campaigns and required finetuning of the final SFN system to ensure the desired quality of service. To avoid time-consuming field measurements and reduce the costs associated with the SFN implementation, this paper aims to predict the performance of an SFN system from the legacy MFN and position data through machine learning (ML) algorithms. It is proposed a ML concatenated structure based on classification and regression to predict SFN electric-field strength, modulation error ratio, and gain. The model's training and test process are performed with a dataset from an SFN/MFN trial in Ghent, Belgium. Multiple algorithms have been tuned and compared to extract the data patterns and select the most accurate algorithms. The best performance to predict the SFN electric-field strength is obtained with a coefficient of determination (R2) of 0.93, modulation error ratio of 0.98, and SFN gain of 0.89 starting from MFN parameters and position data. The proposed method allows classifying the data points according to positive or negative SFN gain with an accuracy of 0.97

    Broadcasting of digital cimema streams over wireless channels: A power-based Unequal Error Protection approach

    No full text
    This paper presents a wavelet transmultiplexer based communication system for the transmission of Digital Cinema streams over wireless channels. To this aim, we adopt the tools of the JPEG2000 Wireless (JPWL) standard. We implement an unequal error protection (UEP) scheme that relies on forward error correction (FEC) channel coding supported by a proper unequal distribution of the transmission power (UPD) among JPWL coding units. In particular, we show that an appropriate combination of Reed-Solomon (RS) coding and UPD on the image data, can greatly improve the average PSNR of the reconstructed frames, in case of transmission over wireless channels with both sparse and packet error statistics, such as those provided by satellite broadcasting and Wireless MAN standards as WiMAX. Copyright 2006 ACM
    corecore