35 research outputs found

    Effects of exercise timing on metabolic health

    Get PDF
    The increasing prevalence of metabolic syndrome is associated with major health and socioeconomic consequences. Currently, physical exercise, together with dietary interventions, is the mainstay of the treatment of obesity and related metabolic complications. Although exercise training includes different modalities, with variable intensity, duration, volume, or frequency, which may have a distinct impact on several characteristics related to metabolic syndrome, the potential effects of exercise timing on metabolic health are yet to be fully elucidated. Remarkably, promising results with regard to this topic have been reported in the last few years. Similar to other time-based interventions, including nutritional therapy or drug administration, time-of-day-based exercise may become a useful approach for the management of metabolic disorders. In this article, we review the role of exercise timing in metabolic health and discuss the potential mechanisms that could drive the metabolic-related benefits of physical exercise performed in a time-dependent manner.Funding for open access charge: Universidad de Málaga/CBUA

    Endotoxin increase after fat overload is related to postprandial hypertriglyceridemia in morbidly obese patients

    Get PDF
    The low-grade inflammation observed in obesity has been associated with a high-fat diet, though this relation is not fully understood. Bacterial endotoxin, produced by gut microbiota, may be the linking factor. However, this has not been confirmed in obese patients. To study the relationship between a high-fat diet and bacterial endotoxin, we analyzed postprandial endotoxemia in morbidly obese patients after a fat overload. The endotoxin levels were determined in serum and the chylomicron fraction at baseline and 3 h after a fat overload in 40 morbidly obese patients and their levels related with the degree of insulin resistance and postprandial hypertriglyceridemia. The morbidly obese patients with the highest postprandial hypertriglyceridemia showed a significant increase in lipopolysaccharide (LPS) levels in serum and the chylomicron fraction after the fat overload. Postprandial chylomicron LPS levels correlated positively with the difference between postprandial triglycerides and baseline triglycerides. There were no significant correlations between C-reactive protein (CRP) and LPS levels. The main variables contributing to serum LPS levels after fat overload were baseline and postprandial triglyceride levels but not glucose or insulin resistance. Additionally, superoxide dismutase activity decreased significantly after the fat overload. Postprandial LPS increase after a fat overload is related to postprandial hypertriglyceridemia but not to degree of insulin resistance in morbidly obese patients.This study was funded by the Fondo de Investigación Sanitaria “Centros de Investigación En Red” (CIBER, CB06/03/0018) of the “Instituto de Salud Carlos III”, FIS PS09/00997, FIS 08/1655 and CP07/00095 of the “Instituto de Salud Carlos III”, Madrid, Spain. SAS 08/325 and SAS 10/0696 Consejería de Salud, Junta de Andalucía. M.C.P. was a recipient of a FPU grant from Educa- tion Ministry, Madrid, Spain [AP2009-4537]

    Evaluation of Adipose Tissue Zinc-Alpha 2-Glycoprotein Gene Expression and Its Relationship with Metabolic Status and Bariatric Surgery Outcomes in Patients with Class III Obesity

    Get PDF
    Zinc-α2 glycoprotein (ZAG) is an adipokine involved in adipocyte metabolism with potential implications in the pathogenesis of metabolic disorders. Our aim was to evaluate the relationship between visceral (VAT) and subcutaneous adipose tissue (SAT) ZAG expression and metabolic parameters in patients with class III obesity, along with the impact of basal ZAG expression on short- and medium-term outcomes related to bariatric surgery. 41 patients with class III obesity who underwent bariatric surgery were included in this study. ZAG gene expression was quantified in SAT and VAT. Patients were classified into two groups according to SAT and VAT ZAG percentile. Anthropometric and biochemical variables were obtained before and 15 days, 45 days, and 1 year after surgery. The lower basal SAT ZAG expression percentile was associated with higher weight and waist circumference, while the lower basal VAT ZAG expression percentile was associated with higher weight, waist circumference, insulin, insulin resistance, and the presence of metabolic syndrome. Basal SAT ZAG expression was inversely related to weight loss at 45 days after surgery, whereas no associations were found between basal VAT ZAG expression and weight loss after surgery. Additionally, a negative association was observed between basal SAT and VAT ZAG expression and the decrease of gamma-glutamyl transferase after bariatric surgery. Therefore, lower SAT and VAT ZAG expression levels were associated with an adverse metabolic profile. However, this fact did not seem to confer worse bariatric surgery-related outcomes. Further research is needed to assess the clinical significance of the role of ZAG expression levels in the dynamics of hepatic enzymes after bariatric surgeryThis study has been co-funded by FEDER funds (“A way to make Europe”). M.M. and L.G.S. are also supported by UMA18-FEDERJA-285 and UMA20-FEDERJA-144, co-funded by Malaga University, Junta de Andalucía and FEDER funds, CB06/03/0018, PI-0297-2018 and PI-0194-2017, co-funded by FEDER funds and Consejería de Salud y Familias, Junta de Andalucía, and CP17/00133, Instituto de Salud Carlos III (ISCIII), Ministry of Science, Innovation and Universities, Spain Partial funding for open access charge: Universidad de Málag

    MicroRNAs as regulators of mitochondrial dysfunction and obesity

    No full text

    Effects of the Ketogenic Diet on Strength Performance in Trained Men and Women: A Systematic Review and Meta-Analysis

    Get PDF
    Ketogenic diets (KDs) are an alternative to improve strength performance and body composition in resistance training participants. The objective of this review and meta-analysis is to verify whether a ketogenic diet produces an increase in the strength of resistance-trained participants. We have evaluated the effect of the ketogenic diet in conjunction with resistance training on the strength levels in trained participants. Boolean algorithms from various databases (PubMed, Scopus, and Web of Science) were used. Meta-analyses were carried out, one on the 1-RM squat (SQ), with 106 trained participants or athletes, and another on the 1-RM on the bench press (BP), evaluating 119 participants. We did not find significant differences between the groups in the variables of SQ or BP, although the size of the effect was slightly higher in the ketogenic group. Conclusions: KDs do not appear to impair 1-RM performance; however, this test does not appear to be the most optimal tool for assessing hypertrophy-based strength session performance in resistance-trained participants

    Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study.

    Get PDF
    Journal Article;BACKGROUND A recent study using a rat model found significant differences at the time of diabetes onset in the bacterial communities responsible for type 1 diabetes modulation. We hypothesized that type 1 diabetes in humans could also be linked to a specific gut microbiota. Our aim was to quantify and evaluate the difference in the composition of gut microbiota between children with type 1 diabetes and healthy children and to determine the possible relationship of the gut microbiota of children with type 1 diabetes with the glycemic level. METHODS A case-control study was carried out with 16 children with type 1 diabetes and 16 healthy children. The fecal bacteria composition was investigated by polymerase chain reaction-denaturing gradient gel electrophoresis and real-time quantitative polymerase chain reaction. RESULTS The mean similarity index was 47.39% for the healthy children and 37.56% for the children with diabetes, whereas the intergroup similarity index was 26.69%. In the children with diabetes, the bacterial number of Actinobacteria and Firmicutes, and the Firmicutes to Bacteroidetes ratio were all significantly decreased, with the quantity of Bacteroidetes significantly increased with respect to healthy children. At the genus level, we found a significant increase in the number of Clostridium, Bacteroides and Veillonella and a significant decrease in the number of Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium rectale group and Prevotella in the children with diabetes. We also found that the number of Bifidobacterium and Lactobacillus, and the Firmicutes to Bacteroidetes ratio correlated negatively and significantly with the plasma glucose level while the quantity of Clostridium correlated positively and significantly with the plasma glucose level in the diabetes group. CONCLUSIONS This is the first study showing that type 1 diabetes is associated with compositional changes in gut microbiota. The significant differences in the number of Bifidobacterium, Lactobacillus and Clostridium and in the Firmicutes to Bacteroidetes ratio observed between the two groups could be related to the glycemic level in the group with diabetes. Moreover, the quantity of bacteria essential to maintain gut integrity was significantly lower in the children with diabetes than the healthy children. These findings could be useful for developing strategies to control the development of type 1 diabetes by modifying the gut microbiota.This work was partially funded by a grant from CIBER, CB06/03/0018 of the Instituto de Salud Carlos III to MM, FC, FJT and MIQO; the Instituto de Salud Carlos III, Madrid, Spain (CP07/0095) to FJT; and the Servicio Andaluz de Salud, AndalucĂ­a, Spain (PI0696/2010) to FJT.Ye

    Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels.

    Get PDF
    BACKGROUND: Several evidences indicate that gut microbiota is involved in the control of host energy metabolism. OBJECTIVE: To evaluate the differences in the composition of gut microbiota in rat models under different nutritional status and physical activity and to identify their associations with serum leptin and ghrelin levels. METHODS: In a case control study, forty male rats were randomly assigned to one of these four experimental groups: ABA group with food restriction and free access to exercise; control ABA group with food restriction and no access to exercise; exercise group with free access to exercise and feed ad libitum and ad libitum group without access to exercise and feed ad libitum. The fecal bacteria composition was investigated by PCR-denaturing gradient gel electrophoresis and real-time qPCR. RESULTS: In restricted eaters, we have found a significant increase in the number of Proteobacteria, Bacteroides, Clostridium, Enterococcus, Prevotella and M. smithii and a significant decrease in the quantities of Actinobacteria, Firmicutes, Bacteroidetes, B. coccoides-E. rectale group, Lactobacillus and Bifidobacterium with respect to unrestricted eaters. Moreover, a significant increase in the number of Lactobacillus, Bifidobacterium and B. coccoides-E. rectale group was observed in exercise group with respect to the rest of groups. We also found a significant positive correlation between the quantity of Bifidobacterium and Lactobacillus and serum leptin levels, and a significant and negative correlation among the number of Clostridium, Bacteroides and Prevotella and serum leptin levels in all experimental groups. Furthermore, serum ghrelin levels were negatively correlated with the quantity of Bifidobacterium, Lactobacillus and B. coccoides-Eubacterium rectale group and positively correlated with the number of Bacteroides and Prevotella. CONCLUSIONS: Nutritional status and physical activity alter gut microbiota composition affecting the diversity and similarity. This study highlights the associations between gut microbiota and appetite-regulating hormones that may be important in terms of satiety and host metabolism

    Choroidal thickness and granulocyte colony-stimulating factor in tears improve the prediction model for coronary artery disease.

    No full text
    Coronary artery disease (CAD) detection in asymptomatic patients still remains controversial. The aim of our study was to evaluate the usefulness of ophthalmologic findings as predictors of the presence of CAD when added to cardiovascular classic risk factors (CRF) in patients with acute coronary cardiopathy suspicion. After clinical stabilization, 96 patients with acute coronary cardiopathy suspicion were selected and divided in two groups: 69 patients with coronary lesions and 27 patients without coronary lesions. Their 192 eyes were subjected to a complete routine ophthalmologic examination. Samples of tear fluid were also collected to be used in the detection of cytokines and inflammatory mediators. Logistic regression models, receiver operating characteristic curves and their area under the curve (AUC) were analysed. Suggestive predictors were choroidal thickness (CT) (OR: 1.02, 95% CI 1.01-1.03) and tear granulocyte colony-stimulating factor (G-CSF) (OR: 0.97, 95% CI 0.95-0.99). We obtained an AUC of 0.9646 (95% CI 0.928-0.999) when CT and tear G-CSF were added as independent variables to the logistic regression model with cardiovascular CRF: sex, age, diabetes, high blood pressure, hypercholesterolemia, smoking habit and obesity. This AUC was significantly higher (p = 0.003) than the prediction derived from the same logistic regression model without CT and tear G-CSF (AUC = 0.828, 95% CI 0.729-0.927). CT and tear G-CSF improved the predictive model for CAD when added to cardiovascular CRF in our sample of symptomatic patients. Subsequent studies are needed for validation of these findings in asymptomatic patients
    corecore