1,014 research outputs found

    Evolution and impact of defects in a p-channel CCD after cryogenic proton-irradiation

    Get PDF
    P-channel CCDs have been shown to display improved tolerance to radiation-induced charge transfer inefficiency (CTI) when compared to n-channel CCDs. However, the defect distribution formed during irradiation is expected to be temperature dependent due to the differences in lattice energy caused by a temperature change. This has been tested through defect analysis of two p-channel e2v CCD204 devices, one irradiated at room temperature and one at a cryogenic temperature (153K). Analysis is performed using the method of single trap pumping. The dominant charge trapping defects at these conditions have been identified as the donor level of the silicon divacancy and the carbon interstitial defect. The defect parameters are analysed both immediately post irradiation and following several subsequent room-temperature anneal phases up until a cumulative anneal time of approximately 10 months. We have also simulated charge transfer in an irradiated CCD pixel using the defect distribution from both the room-temperature and cryogenic case, to study how the changes affect imaging performance. The results demonstrate the importance of cryogenic irradiation and annealing studies, with large variations seen in the defect distribution when compared to a device irradiated at room-temperature, which is the current standard procedure for radiation-tolerance testing

    Narrow-line Laser Cooling by Adiabatic Transfer

    Get PDF
    We propose and demonstrate a novel laser cooling mechanism applicable to particles with narrow-linewidth optical transitions. By sweeping the frequency of counter-propagating laser beams in a sawtooth manner, we cause adiabatic transfer back and forth between the ground state and a long-lived optically excited state. The time-ordering of these adiabatic transfers is determined by Doppler shifts, which ensures that the associated photon recoils are in the opposite direction to the particle's motion. This ultimately leads to a robust cooling mechanism capable of exerting large forces via a weak transition and with reduced reliance on spontaneous emission. We present a simple intuitive model for the resulting frictional force, and directly demonstrate its efficacy for increasing the total phase-space density of an atomic ensemble. We rely on both simulation and experimental studies using the 7.5~kHz linewidth 1^1S0_0 to 3^3P1_1 transition in 88^{88}Sr. The reduced reliance on spontaneous emission may allow this adiabatic sweep method to be a useful tool for cooling particles that lack closed cycling transitions, such as molecules.Comment: 5 pages, 4 figure

    Postirradiation behavior of p-channel charge-coupled devices irradiated at 153 K

    Get PDF
    The displacement damage hardness that can be achieved using p-channel charge-coupled devices (CCD) was originally demonstrated in 1997, and since then a number of other studies have demonstrated an improved tolerance to radiation-induced CTI when compared to n-channel CCDs. A number of recent studies have also shown that the temperature history of the device after the irradiation impacts the performance of the detector, linked to the mobility of defects at different temperatures. This study describes the initial results from an e2v technologies p-channel CCD204 irradiated at 153 K with a 10 MeV equivalent proton fluences of 1.24×109 and 1.24×1011 protons cm-2. The dark current, cosmetic quality and the number of defects identified using trap pumping immediately were monitored after the irradiation for a period of 150 hours with the device held at 153 K and then after different periods of time at room temperature. The device also exhibited a flatband voltage shift of around 30 mV / krad, determined by the reduction in full well capacity

    The relationship between pumped traps and signal loss in buried channel CCDs

    Get PDF
    Pocket-pumping is an established technique for identifying the locations of charge trapping sites within the transport channels of CCDs. Various parameters of the pumping process can be manipulated to increase the efficiency, or allow characterisation of the trap sites effective during nominal operating modes. A CCD273 was irradiated in a triangular region by protons to a 10 MeV equivalent fluence of 1.2E9 p cm2, ensuring a suitably low trap density for ease of automated trap recognition. X-rays of 5,898 eV were incident on the CCD above the region irradiated with the triangle, such that events could be analysed having passed through an increasing length of irradiated silicon and hence number of trapping sites. Here we present the relationship between the number of traps identified by pocket pumping within the parallel transport channels of a CCD273 and the amount of signal that is deferred by the trapping process during readout

    Digging supplementary buried channels: investigating the notch architecture within the CCD pixels on ESA's Gaia satellite

    Get PDF
    The European Space Agency (ESA) Gaia satellite has 106 CCD image sensors which will suffer from increased charge transfer inefficiency (CTI) as a result of radiation damage. To aid the mitigation at low signal levels, the CCD design includes Supplementary Buried Channels (SBCs, otherwise known as `notches') within each CCD column. We present the largest published sample of Gaia CCD SBC Full Well Capacity (FWC) laboratory measurements and simulations based on 13 devices. We find that Gaia CCDs manufactured post-2004 have SBCs with FWCs in the upper half of each CCD that are systematically smaller by two orders of magnitude (<50 electrons) compared to those manufactured pre-2004 (thousands of electrons). Gaia's faint star (13 < G < 20 mag) astrometric performance predictions by Prod'homme et al. and Holl et al. use pre-2004 SBC FWCs as inputs to their simulations. However, all the CCDs already integrated onto the satellite for the 2013 launch are post-2004. SBC FWC measurements are not available for one of our five post-2004 CCDs but the fact it meets Gaia's image location requirements suggests it has SBC FWCs similar to pre-2004. It is too late to measure the SBC FWCs onboard the satellite and it is not possible to theoretically predict them. Gaia's faint star astrometric performance predictions depend on knowledge of the onboard SBC FWCs but as these are currently unavailable, it is not known how representative of the whole focal plane the current predictions are. Therefore, we suggest Gaia's initial in-orbit calibrations should include measurement of the onboard SBC FWCs. We present a potential method to do this. Faint star astrometric performance predictions based on onboard SBC FWCs at the start of the mission would allow satellite operating conditions or CTI software mitigation to be further optimised to improve the scientific return of Gaia.Comment: Accepted for publication in MNRAS, 16 pages, 19 figure
    • …
    corecore